468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

Lightweight Memory Management
for High Performance Applications
in Consolidated Environments

Brian Kocoloski and John Lange

Abstract—Linux-based operating systems and runtimes (OS/Rs) have emerged as the environments of choice for the majority of HPC
systems. While Linux-based OS/Rs have advantages such as extensive feature sets and developer familiarity, these features come at
the cost of additional system overhead. In contrast to Linux, there is a substantial history of work in the HPC community focused on
lightweight OS/Rs that provide scalable and consistent performance for HPC applications, but lack many of the features offered by
commodity OS/Rs. In this paper, we propose to bridge the gap between LWKs and commodity OS/Rs by selectively providing a
lightweight memory subsystem for HPC applications in a commodity OS/R where concurrently executing a diverse range of workloads
is commonplace. Our system HPMMAP provides lightweight memory performance transparently to HPC applications by bypassing
Linux’s memory management layer. Using HPMMARP, HPC applications achieve consistent performance while the same local compute
nodes execute competing workloads likely to be found in HPC clusters and “in-situ” workload deployments. Our approach is
dynamically configurable at runtime, and requires no resources when not in use. We show that HPMMAP can decrease variance and
reduce application runtime by up to 50 percent when executing a co-located competing commodity workload.

Index Terms—Lightweight kernels, operating systems, high performance computing, cloud computing

1 INTRODUCTION

WHILE traditional HPC systems have typically followed
the practice of providing dedicated systems for a single
large scale application, current trends in both cloud environ-
ments [1], [2] and supercomputing class systems point to a
future where that is no longer the case. Instead, as cloud pro-
viders increase their HPC offerings and “in-situ” application
architectures [3], [4] become more prevalent, running HPC
applications in a consolidated environment concurrently with
multiple competing workloads is likely to become a common
practice. While this movement towards consolidation offers
numerous opportunities for improving access to cloud-based
HPC resources [5], [6], [7], [8] and enabling exascale class sys-
tems, it introduces a new set of problems to HPC system
design in the form of cross-workload interference [9], [10] and
resource contention. This issue is exacerbated by the fact
that the majority of current and future HPC platforms will
rely on some form of a commodity operating system and run-
time (OS/R) architecture based on Linux. Such systems are
designed from a set of commodity design goals that are fun-
damentally different from the goals of an HPC system, and
often result in behaviors under load that are not aligned with
the requirements of an HPC application.

Linux-based OS/Rs have emerged as the dominant
environment for many modern HPC systems [11], [12],

The authors are with the Department of Computer Science, University

Pittsburgh, Pittsburgh, PA 15260.
E-mail: {briankoco, jacklange}@cs.pitt.edu.

[13] due to their support of extensive feature sets, ease of
programmability, familiarity to application developers,
and general ubiquity. Linux environments provide tangi-
ble benefits to both usability and maintainability, while
generally offering acceptable performance in a dedicated
and properly configured HPC system. However, we argue
that as HPC systems continue to increase the degree
of local workload consolidation, a commodity OS/R archi-
tecture is ill-suited to provide an appropriate level of
performance for HPC-class applications. This is because
commodity systems, and Linux in particular, are designed
to maximize a set of design goals that conflict with those
required by HPC applications. Specifically, commodity
systems are almost always designed to maximize resource
utilization, ensure fairness, and most importantly, grace-
fully degrade in the face of increasing loads. These goals
often directly conflict with those of HPC environments
that are generally characterized as requiring consistent
performance in the face of sustained heavy loads.

The deficiencies of commodity OS/Rs have led to the
development of a number of alternative architectures based
on a lightweight approach [14], [15]. These lightweight ker-
nel (LWK) OS/Rs provide optimized environments for HPC
applications that avoid the pitfalls of commodity architec-
tures. In particular, LWK-based systems are designed to pro-
v]jde consistent performance regardless of the current system
foad while also removing as much overhead as possible. As a
result these systems eschew many of the features presentin a

Manuscript received 25 July 2014; revised 3 Dec. 2014; accepted 25 Jan. 26@snmodity system, and instead provide the bare minimum

Date of publication 1 Feb. 2015; date of current version 20 Jan. 2016.
Recommended for acceptance by K. Taura.

For information on obtaining reprints of this article, please send e-mail t

reprints@ieee.org, and reference the Digital Object Identiber below.
Digital Object IdentiPer no. 10.1109/TPDS.2015.2397452

(0]

of functionality needed to support a constrained set of HPC
applications. Thus, while these environments are capable of
providing superior performance at scale [16], [17], [18], they
are generally considered difficult to use and limited in their

1045-9219 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KOCOLOSKI AND LANGE: LIGHTWEIGHT MEMORY MANAGEMENT FOR HIGH PERFORMANCE APPLICATIONS IN CONSOLIDATED ENVIRONMENTS 469

Commodity Application
S s
foonterface G

HPC Application
I “Modified System i
i...Calllnterface %

Linux Kernel

Linux Memory Manager HPMMAP

Linux Memory NODE HPMMAP Memory

Fig. 1. A high-level view of HPMMAP memory partitioning.

functionality. As such they are not well suited to act as a uni-
versal OS/R for a fully consolidated environment executing
a mix of HPC applications along with commodity and/or
other feature-rich workloads.

In order to provide effective consolidation for an HPC-
capable environment it is necessary to support both the
performance characteristics required by traditional HPC
applications, as well as the extended features needed by
both commodity applications and in-situ analysis/visuali-
zation workloads. Such an ideal system would combine the
features and behaviors of both a commodity and light-
weight OS/R into a single environment that supported the
full range of HPC and commodity applications. In this
paper we focus on providing such an architecture for node
level memory management through an OS extension called
HPMMAP (High Performance Memory Mapping and Allo-
cation Platform), a secondary memory management layer
designed specifically for HPC environments running on
commodity OS/Rs.

HPMMAP is based on the memory management design
philosophy used by LWK OS/R architectures. Fundamen-
tally, HPMMAP provides the ability to dynamically
partition a node’s physical memory and independently
manage partitions in a separate and isolated resource man-
agement layer. As a result, HPC applications running on a
consolidated platform are able to bypass the underlying
commodity memory management layer and instead use a
specialized lightweight memory management framework
designed specifically around the requirements of HPC
applications. Thus, HPMMAP not only avoids the over-
heads associated with Linux’s commodity memory manage-
ment architecture, but also is able to isolate HPC
applications from interference caused by co-located com-
modity workloads. Furthermore, HPMMAP is implemented
entirely as a kernel module and so does not require modifi-
cations to either the commodity OS/R or the applications
themselves, and so provides the benefits of a lightweight
memory management stack in a way that is completely
transparent to HPC applications. A high-level overview of
the HPMMAP approach is shown in Fig. 1.

The architecture of HPMMAP is based on the capability,
provided by modern Linux kernels, to selectively disable
hardware resources. A disabled resource is effectively
removed from Linux’s resource management subsystems
while still remaining accessible to some degree. This not
only allows a user to selectively confine Linux into a
dynamically configurable hardware partition, but also to
assume control of the disabled resources with their own
selected management frameworks. HPMMAP specifically

utilizes the memory off8iningcapabilities to take control of a
physically partitioned region of memory and manage it
independently from the rest of the Linux kernel. This allows
HPMMAP to not only isolate HPC applications from the
effects of competing commodity workloads, but also to pro-
vide optimizations unavailable in a commodity system such
as low overhead large (2/4 MB) page allocations.
The contributions of our work are the following:

We identify several issues in the Linux memory
management architecture and examine their effects
on HPC application performance.

We introduce and describe the HPMMARP architec-
ture and demonstrate how it can effectively provide
LWK-like memory performance on a commodity
OS/R.

We evaluate HPMMAP on a single node and at scale
and show that it is capable of improving perfor-
mance by up to 50 percent for a set of widely
used HPC benchmarks from the Mantevo' and ASC
Sequoia” suites.

2 LiNuX MEMORY MANAGEMENT

Historically, Linux has taken a somewhat conservative
approach to memory management that focuses on the needs
of commodity class systems. While features have been
added to benefit HPC-class applications, they are designed
as secondary components that either operate in the back-
ground (Transparent Huge Pages, THP) or require explicit
user configuration (HugeTLBfs). Both of these approaches,
each of which are discussed in detail in Sections 2.2 and 2.3,
provide applications with large page (2/4 MB) memory
mappings as opposed to the default (4 KB), and so improve
performance through shorter page table walks and
decreased TLB pressure. While these existing approaches
do provide performance benefits, particularly to HPC appli-
cations, they still exhibit problematic behaviors, especially
when the system is experiencing significant load. We enu-
merate some of these issues below:

General Linux Design Issues

Processes cannot be isolated from the effects of mem-
ory contention, even when mapped by large pages.
Process address space organization is optimized for
small page allocations, which often prevent large
page mappings due to alignment issues and permis-
sion conflicts.

Transparent Huge Pages Limitations

Merge operations are driven by OS-level heuristics
without knowledge of application requirements and
can occur randomly during process execution.
Merge operations are mutually exclusive with other
address space operations, requiring all page faults to
block until merge completion.

Memory pinning results in large page “splitting” in
which large pages are broken down into small pages.

1. http:/ /http:/ /mantevo.org/
2. https:/ /asc.llnl.gov/sequoia/benchmarks/

KOCOLOSKI AND LANGE: LIGHTWEIGHT MEMORY MANAGEMENT FOR HIGH PERFORMANCE APPLICATIONS IN CONSOLIDATED ENVIRONMENTS 471

20 20

Page Fault Handling Time
(Millions of Cycles)
>
Page Fault Handling Time
(Millions of Cycles)
5

*
* * x * *
EoWop oy oKox oz R B
0 333 0 374
Application Duration (s) Application Duration (s)

(a) No Competition (b) With Competition

Page Fault Handling Time
(Millions of Cycles)
Page Fault Handling Time
(Millions of Cycles)

x
X

0 333 0 374
Application Duration (s) Application Duration (s)

(c) No Competition (d) With Competition

Fig. 4. Impact of competing workloads on the page fault handler using
THP during the miniMD benchmark. (a) and (b) show all page faults
taken, while (c) and (d) show the lower quarter of (a) and (b), respec-
tively. Blue dots indicate 4 KB faults following a THP “merge” operation,
while green dots indicate 2 MB faults.

unaligned VMAs. When the system encounters such config-
urations it has no choice but to map them using small pages.

Finally, while Linux is designed and optimized to allocate
pages asynchronously as memory is accessed by the process,
it does support the concept of memory “prefaulting” for a
subset of memory management operations whereby pages
are mapped to physical memory at allocation time. Users can
specify the MAP_POPULATHlag when allocating memory
via mmap indicating that pages should be mapped to physi-
cal memory when they are allocated rather than during the
initial access. While such an approach may eliminate some of
the overheads associated with page fault handling, it is only
able to support memory allocated via mmap meaning that
regular heap memory (allocated via brk), as well as memory
for the remaining address space regions (program text, data,
bss, stack, shared libraries, etc.) can only be mapped during
page faults. For HugeTLBfs, whose management already
requires a special mmapflag, this does not pose any addi-
tional limitations, and thus all HugeTLBfs pages are indeed
“prefaulted” by default. However, memory for all non
mmaped regions must be allocated asynchronously.

2.2 Transparent Huge Pages

THP [20] was introduced to the kernel as a fully automatic
large page mechanism requiring no explicit application or
administrative cooperation. THP is implemented in two
separate components. First, the page fault handler will try
to fix faults by allocating and mapping in large pages when-
ever possible. The success of a large page mapping is largely
dependent on the amount of free, contiguous memory in the
system, but it also depends on other characteristics, such as
the alignment of nearby VMAs in the address space.
Accordingly, the page fault handler may fail to fix the fault
with a large page, in which case it falls back and allocates a
small page to handle the fault. In addition, there is a second
component of THP implemented as a background kernel
thread, called khugepagedthat continuously attempts to

5

® E Core0 +
£ Core 1
EFo% 41 o F+ ~ Core2 O

L} © o
o2 O Core3 ©
= > o
TO 3
25
—_
s5c 2¢
g2 :
o= 1t
L=
©
o

0
0 215

Application Duration (s)

Fig. 5. Impact of THP “merging” on the page fault handler during a multi-
core execution of the miniMD benchmark.

allocate a large page. Once successful, khugepagethaps the
freshly allocated large page into a valid area of the address
space of any process in the system that has requested THP
support. It should be noted that this “THP merging” opera-
tion may require the unmapping of a number of small pages
currently mapped into the selected virtual address range.

It is well-established in the HPC community that OS noise
can have a significant impact on HPC application perfor-
mance [19], [21]. Thus, while THP may be appropriate for
commodity use, its value to HPC applications is limited, par-
ticularly due to the noise that can result from merging.
Merge operations are driven by OS-level heuristics that are
largely unaware of application requirements, and so can
have a substantial impact on HPC workloads. When THP
allocates a large page and begins to perform a merge, it locks
the page tables of the process that it decides to assign the
page to. While THP is performing the merge, a relatively
long operation compared to a typical page fault, the process
receiving the page is prevented from servicing any page
faults that occur. Only after the merge has completed may
the fault be handled. This behavior, as reported in Fig. 2 and
illustrated in Fig. 4a, leads to a roughly 1,000 increase in
page fault handling time for the miniMD benchmark. Fur-
thermore, when the system is under pressure from addi-
tional workloads (a parallel kernel compilation), these merge
delays increase substantially, as demonstrated in Fig. 4b.

Making matters worse for HPC applications is the fact
that merge operations are not synchronized with any
meaningful application behavior. Fig. 5 illustrates the prob-
lem when executing the miniMD benchmark on 4 cores
while simultaneously executing a parallel kernel compila-
tion. As the figure demonstrates, each core performs THP
merge operations at different times during the bench-
mark’s execution. For example, core 2 performs five merge
operations near the beginning of the benchmark, while
core 3 performs six merge operations when the benchmark
is nearly 50 percent complete. This demonstrates that not
only are merge operations not synchronized with respect
to any application-specific checkpoints/barriers, but they
are not synchronized with ranks on other cores. Such
behavior is unlikely to lead to good scaling prospects for
tightly coupled HPC applications.

In addition to the overhead of merging, general memory
fragmentation can be problematic for THP as well. An often
suggested optimization to provide protection from both

472

fragmentation and the effects of swapping under memory
contention is to pin all memory in RAM. Linux provides the
mlock and mlockall system calls that allow a process to
lock a specific memory region or its entire address space,
respectively, into RAM. However, this optimization is
largely incompatible with THP because THP does not sup-
port the pinning of large pages, a decision derived from the
Linux design philosophy of optimizing resource utilization
and sharing over maximizing performance.

2.3 HugeTLBfs

HugeTLBfs [22], the other large page mechanism, is a RAM-
based filesystem that allocates memory for each file using
a user-specified page size. HugeTLBfs requires the presence
of separate preallocated memory pools that must be
explicitly reserved by a system administrator. Access to
HugeTLBfs is generally managed through the libhugetlbfs
library. This library allows the virtual address space, with
the exception of the stack, to be mapped using large pages.
As previously demonstrated in Fig. 3, HugeTLBfs still
requires a significant number of page faults to back an
application’s address space, even though it utilizes its own
preallocated memory pools and can essentially guarantee
the presence of available physical memory. Also, similarly
to THP, HugeTLBfs is constrained by the process address
space organization specified by the VMAs.

Fig. 6 shows how the addition of competing workloads
affects the page fault handler on applications backed by
HugeTLBfs. While a lightly loaded system experiences a
fairly low amount of overhead with HugeTLBfs, the pres-
ence of competing workloads imposes an immediate effect
on all applications. The figures in the first and third rows
show the behavior of the page fault handler for a single
workload configuration running an HPC benchmark, while
the figures on the second and fourth rows show the same
behavior for the benchmark co-located with an additional
competing workload (parallel kernel build).

In each of these figures, we see that the addition of a
competing workload results in substantial increases in the
time to handle small page faults in areas not managed
directly by HugeTLBfs. Though this behavior might seem
counter-intuitive, it is largely explained by the fact that
HugeTLBfs requires a separate memory pool that the
default page fault handler is unable to allocate memory
from. Although sufficient memory is available through
HugeTLBfs, the page fault handler cannot use it as it
reserved explicitly for HugeTLBfs allocations. The compet-
ing workloads saturate the remaining resources on the sys-
tem and force the benchmark process to contend for now
scarce small pages.

Interestingly, these figures all demonstrate the negative
impact of additional workloads on HugeTLBfs" page fault
performance, but they do so in different ways based on the
memory allocation and access patterns specific to the indi-
vidual benchmarks. Figs. 6a and 6b demonstrate the afore-
mentioned difficulty in handling small pages due to the
memory scarcity for handling small page faults, showing
increases in both the total number of small page faults as
well as the number of cycles needed to handle the faults.
HPCCG and CoMD both handle a relatively small number
of short small page faults near the beginning of their

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

VOL.27, NO.2, FEBRUARY 2016

10

Page Fault Handling Time
(Millions of Cycles)
o
X
Page Fault Handling Time
(Millions of Cycles)
o

' B
0 + 0
11 0 17
Application Duration (s) Application Duration (s)
(a) HPCCG (b) HPCCG + kern
3 3
o o
E E
Fa Fo
20 20
25 25
£9 £9
20 20O . %
£5 15}, X £5 15 .
=2 % X =2 a1
5.8 X * 5.8 %
w= X ¥ w= X % b3
03 5% =y
& x & X % % “
o a X
0 0 -
0 12 0 19
Application Duration (s) Application Duration (s)
(c) CoMD (d) CoMD + kern
5 5
o o
£ £
o o
X2 X2
25 25
=3 =3 + +
20 20
£5 25 £5 25 +
=2 Pl
35 38 .
o % o
o= o=
- | ' § i
0 0
0 265 0 312
Application Duration (s) Application Duration (s)
(e) miniFE (f) miniFE + kern
15 15
o x ¥ o x X
£ £ x
= . =
25 £ 25 x X
£8 X £5
I 20
£5 75} « £5 75 »
= =0
3s ; 1
= % X = x
o3 * % o3 X x
g g < i
o x o &ﬁ i S
0
0 15

Application Duration (s)

(g) CloverLeaf

3 3

Application Duration (s)

(h) CloverLeaf + kern

<

I
i RSN oSy

Page Fault Handling Time
(Millions of Cycles)
@
Page Fault Handling Time
(Millions of Cycles)
&

XOORKRI

0 0
0 480 0 600

Application Duration (s)

(j) miniMD + kern

Application Duration (s)
(1) miniMD

Fig. 6. Impact of a competing workload on the page fault handler using
HugeTLBfs. Faults fixed with small (4 KB) and large (2 MB) pages are
red and green, respectively.

execution without a competing workload, but when execut-
ing with a co-located kernel build they experience much
higher overheads for these faults. As can be seen, some of
these faults require more time to process than many of the
large page faults, an alarming result given the added time
that must spent allocating memory for large pages.

Fig. 6¢c shows that miniFE is impacted differently by the
presence of a competing workload. Without executing with
a competing workload, it is clear that the benchmark allo-
cates and faults in a large page-backed data structure as
demonstrated by the large page faults around the 50 percent
completion mark. When the competing kernel build is
added however, the data structure cannot be entirely
backed by large pages, as much of the remainder of the

KOCOLOSKI AND LANGE: LIGHTWEIGHT MEMORY MANAGEMENT FOR HIGH PERFORMANCE APPLICATIONS IN CONSOLIDATED ENVIRONMENTS 473

benchmark’s execution is spent handling small page faults.
Furthermore, as seen in HPCCG and CoMD, miniFE is occa-
sionally impacted by small page fault outliers that require a
significant amount of time to handle. Figs. 6d and 6e dem-
onstrate that page fault performance during the CloverLeaf
and miniMD benchmarks is less impacted by the presence
of competing workloads than during the other benchmarks.
However, both figures do still demonstrate outliers when
running with competition that are not seen when the bench-
mark is running alone on the system.

3 HPMMAP

In this section, we present High Performance Memory Map-
ping and Allocation Platform. HPMMAP seeks to provide
low overhead memory management for HPC applications
by adopting a lightweight design philosophy that bypasses
the default memory management system provided by the
OS. In addition, HPMMAP is able to provide isolated mem-
ory partitioning capabilities that prevent cross-workload
interference from affecting the performance of HPC applica-
tions. Section 3.1 will provide a high-level overview of
HPMMAP, including a discussion of the theory motivating
its design. We will demonstrate how applications make use
of HPMMAP and discuss the implementation in Section 3.2.
Finally, Sections 3.3 and 3.4 will discuss the techniques
HPMMAP uses to integrate with an unmodified Linux ker-
nel and fully support HPC applications.

3.1 Overview

In contrast to commodity operating systems, lightweight
kernels are specifically built to provide an environment that
can optimize HPC application performance. LWKSs, such as
Kitten [14] from Sandia National Labs and Blue Gene’s
CNK [15], generally aim to accomplish this by providing
low-overhead, consistent, and predictable access to hard-
ware resources. Such goals lead to design decisions that sac-
rifice things like resource sharing and fine-grained resource
allocation, and instead favor more simple, coarse-grained
resource management strategies. The goals of the individual
subsystems found in lightweight kernels then necessarily
conflict with those that exist in commodity operating envi-
ronments, such as maximizing resource utilization and
sharing, fairness, and security.

In this work, our goal is to provide a lightweight memory
subsystem that can exist in the context of a full-fledged com-
modity Linux kernel in a way that can transparently but
effectively support HPC application workloads. Our solu-
tion takes the form of HPMMAP, which is designed to allow
a lightweight kernel memory subsystem to plug into a com-
modity operating system and support HPC applications.
HPMMAP does not attempt to replace or augment any
existing memory management techniques, but instead
installs an additional lightweight subsystem that can exist
in parallel with any commodity subsystems that the OS
already employs. Thus, both commodity and HPC work-
loads can co-exist on the same machine, but need not share
a memory management interface that is necessarily better at
supporting one than the other.

HPMMAP is optimized to support HPC application per-
formance. For example, HPMMAP treats large pages (2 MB

by default, but up to 1 GB where supported by hardware)
as the fundamental unit of memory allocation, which
allows it to overcome the issues that result from commod-
ity layouts that are optimized for small page allocations.
As a result, processes mapped by HPMMAP have their
entire address spaces mapped by large pages by default.
Furthermore, HPMMAP provides an “on-request” mem-
ory allocation policy. As opposed to the demand paging
scheme found in Linux and other commodity systems,
when a process requests memory from the operating
system, all virtual memory regions that are created are
immediately mapped to physical memory regions. This
means that valid accesses to these virtual regions will
generate no page faults, and thus will completely avoid
overhead costs imposed by the page fault handler. The
combination of default large page allocations and the
elimination of page fault handling means that processes
mapped by HPMMAP have almost no exposure to any
overheads that can be generated from more heavyweight
memory management models.

3.2 HPMMAP Implementation

HPMMAP has been implemented as a Linux kernel module
that can be loaded into a running kernel and thus does not
require kernel re-compilation or system reconfiguration
to install. HPMMAP provides a lightweight memory sub-
system and removes overheads at both the software
and hardware levels by providing its own virtual memory
management and physical memory management layers.
HPMMAP’s memory management layers borrow heavily
from those found in the Kitten LWK. We have shown in pre-
vious work that Kitten provides a very high degree of mem-
ory performance and isolation and can support HPC
applications more effectively than commodity environ-
ments [14], [23].

By enabling a Linux configuration feature called Memory
Hot RemoveHPMMAP can ofinememory from Linux and
impose its own management schemes over it. Offlined
memory will never be allocated by Linux, but it remains
physically addressable by the CPU. HPMMAP again bor-
rows from Kitten by using Kitten’s buddy allocator to man-
age offlined memory. Memory offlining allows HPMMAP
to isolate processes by preventing the effects of memory
contention on the commodity memory regions from spilling
over into the HPMMAP regions. Furthermore, the fact that
offlined memory is available in sufficiently large contiguous
blocks (no less than 128 MB, and generally much more)
ensures that HPMMAP can always allocate large pages,
nevemeeding to default to a smaller page size.

HPMMAP is designed to operate transparently to the
applications using it, and thus requires no modifications or
special compile time options in order to run. User-level
interaction with HPMMAP is diagrammed in Fig. 7. The left
side of the figure illustrates user-level operations while the
right side contains operations executed in the kernel by the
HPMMAP subsystem. A special user-level tool is used to
both launch and register applications with the HPMMAP
service. Registration is done by inserting each process ID
number (PID) into an internal hash table. The hash table
entry remains valid for the entire lifetime of the process and
is only removed when the process exits.

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

.
User Space : Kernel Space
'
|

PID Hash
Table

Insen
Application Launch 4—,_:-’
Delete
PID Found’
Search
Application Exit : No Yes

HPMMAP
System Call

!

Map/Unmap Lightweight
Page Tables Memory Allocator

1
|

,,,,,,,,,, I B
i Hardware [
1 Offlined
3 RAM

Fig. 7. Application interaction with HPMMAP.

Orlglnal
System Call Invocation 4—‘—77 System Call

HPMMAP’s interface is based on system call interposi-
tioning. When any process makes a system call that
requires modifications to its virtual address space, a check
is made against the hash table to determine if the process is
handled by HPMMAP. If the PID is not found, this indi-
cates that the process has not requested HPMMAP support,
and so the default Linux system call handler is invoked as
normal. However, if the PID is present, the system call is
redirected to an internal implementation provided by
HPMMAP. HPMMAP then performs the specified opera-
tion on its internal state, allocating and freeing memory
from its internal pools as necessary and updating the proc-
ess’ page tables directly.

3.3 Co-Managed Page Tables

The Linux paging architecture supports a wide array of fea-
tures that are built around commodity application require-
ments. Among these features include dynamic page
protections (read/write/execute), large page splitting and
merging, memory de-fragmentation, disk swapping, and
many others. One approach to managing HPMMAP mem-
ory regions would be to reuse upper-level page table direc-
tories previously mapped by Linux for areas of the process
address space that are not mapped by HPMMAP (e.g., pro-
gram text, shared file mappings). However, the plethora of
commodity-type features that Linux supports complicate
memory management routines and make it difficult if not
impossible to share page table entries without introducing
race conditions and/or bugs. Furthermore, for the purposes
of mapping large HPC application data structures, these
features are unlikely to be used.

Rather than trying to share upper-level page table entries
with Linux-mapped regions, HPMMAP makes page table
modifications internally, relying on the fact that processes
on 64-bit systems generally use only a very small portion of
their virtual address spaces. Typically, at least 256 terabytes
of virtual memory is available for a process to use, but in
our experience Linux only maps a very small percentage of
this memory. When a process registers its PID, HPMMAP
locates a large unused region of virtual address space and
creates a single VMA to represent the region. HPMMAP
then adds the VMA to Linux’ per-process task struct, at
which point Linux will no longer identify the region as free
and will not access the corresponding page table entries.
The result is that these page tables are entirely independent
from the virtual memory state handled by Linux, and

ensures that Linux will not interfere either directly or indi-
rectly in the operation of HPMMAP.

3.4 Application Interface
By design, processes are provided with a fairly restricted
interface through which they may request kernel services:
system calls. Therefore, interposing system calls provides a
means by which HPMMAP can intercept any communica-
tion originating in user space between a process and the ker-
nel. By identifying which system calls will allocate or
potentially modify the address space and re-directing to its
own internal versions, system call interpositioning allows
HPMMAP to provide lightweight management transpar-
ently with respect to both the kernel and the process. The
question then becomes: how many system calls access a
process’ address space? Must HPMMAP interpose them all?
Fortunately, the number of system calls that HPMMAP
must interpose is much smaller than the total number that
require access to the process’ virtual memory. As an exam-
ple, it would be reasonable to suggest that HPMMAP would
need internal versions of the read and write system calls,
given that they both access a process’ virtual address space
and certainly must verify the validity of the address regions
being communicated by the process. However, these system
calls and most others that require such address verification
and/or only access existing memory mappings are
wrapped with a set of operations that rely on the validity of
hardware page tables as opposed to existence of kernel-
specific data structures (i.e., VMAs). So, for providing read/
write and other basic I/O functionality, Linux is concerned
that any provided user virtual addresses are valid with
respect to the hardware state, and thus will process
HPMMAP memory regions (which, due to HPMMAP’s on-
requestmanagement techniques, are guaranteed to always
be mapped to physical memory). In general, this means that
HPMMAP must only interpose those system calls that mod-
ify the process’ address space, a much smaller set than those
that access virtual memory.

3.5 Device Driver Interface
Filesystems and devices that utilize direct I/O mecha-
nisms often require modifications to address spaces that
are reliant on VMAs and other kernel data structures. For
example, for a process initializing a DMA operation, the
DMA and I/O management subsystems may need to
allocate virtual memory and/or pin memory regions in
RAM for the process. Fortunately, the interface by which
the Linux memory subsystem is invoked to handle these
operations is constrained to a very small set of helper
functions. These interfaces are encapsulated in the
get_user_pages and remap_pfn_range functions
that, respectively, are used to pin a region of a process’
virtual address space in RAM, and to map a range of
page frames to a specified virtual address range. Our
approach to enabling the use of HPMMAP for these types
of direct I/O of operations focuses on enabling these
functions for HPMMAP address regions.

To address this issue we utilize the KProbed24] interface
to allow HPMMAP to dynamically override these functions
without requiring kernel modification. HPMMAP places a

KOCOLOSKI AND LANGE: LIGHTWEIGHT MEMORY MANAGEMENT FOR HIGH PERFORMANCE APPLICATIONS IN CONSOLIDATED ENVIRONMENTS 475

KProbe at the address of both get user_pages and
remap_pfn_range so that when these functions are
invoked, control is first transferred to the internal
HPMMAP version of the function. HPMMAP then queries
the PID and virtual address region supplied as function
parameters to determine if it has mapped the requested
region. If it has, the internal HPMMAP function is invoked;
otherwise, HPMMAP simply returns and allows Linux to
handle the function call as normal.

In all, our implementation consists of roughly 6,000 lines
of C code. This includes code that implements the mmap
munmap mprotect and brk system calls,’ page table man-
agement code, the buddy allocator, and the internal ver-
sions of get_user_pages and remap_pfn_range

4 EXPERIMENTAL EVALUATION

To evaluate the efficacy of HPMMAP, we compared the
performance of HPMMAP to that of a commodity Linux
environment using both Transparent Huge Pages and
HugeTLBfs. The goal of these experiments was to evaluate
the performance of HPC applications executing concur-
rently with commodity workloads on the same system. Our
evaluation is split into two parts. First, we ran a set of bench-
marks on a single node and scaled up the amount of co-
located commodity work in order to determine the effects of
resource contention on HPC application performance.

In addition to the single node experiments, we per-
formed two multi-node scaling study studies in which
each node executed co-located HPC and commodity work-
loads to determine whether or not the effects of contention
on a single node were serious enough to result in discern-
ible performance impacts at larger scales. The first of these
experiments was executed on a system with a Gigabit
Ethernet connection between the nodes. This experiment
was designed to measure the scaling characteristics of each
memory manager in a commodity-type environment that
lacks a high-speed interconnect. Conversely, the second
scaling experiment was executed on a system with a high
speed Infiniband interconnection between the nodes. This
experiment was designed to measure the scaling character-
istics of each memory manager in a supercomputing-type
environment with a network connection suitable for very
high degrees of scalability.

For each experiment we used the same system configura-
tion, changing only the memory manager supporting the
workloads. For the THP tests, THP managed both the HPC
and commodity workloads. For the HugeTLBfs tests,
HugeTLBfs managed only the HPC workload, while THP
was disabled and Linux had no large page support for the
commodity workload. For the HPMMAP tests, HPMMAP
managed the HPC workload while THP managed the com-
modity workload.

4.1 Benchmarks
The benchmarks we selected for our evaluation were taken
from the Mantevo MiniApps benchmark suite from Sandia

3. There are additional system calls that modify a process’ virtual
address space. We have found that HPC applications do not use these
calls in practice, so we have not yet implemented them.

National Labs. These benchmarks are a set of “proxy
applications” that exhibit the core kernel behavior common
to real world HPC applications. They are generally small
but are designed to exhibit the behavior of large-scale HPC
applications. Each benchmark was compiled using Open-
MPI (version 1.7.2) for parallel execution. We also evaluated
the performance of the LAMMPS benchmark from the ASC
Sequoia benchmark suite provided by Lawrence Livermore
National Lab. We chose the following benchmarks for these
experiments:

HPCCG. A conjugate gradient solver whose work-
load is representative of many HPC applications
CoMD. A set of classical molecular dynamics algo-
rithms used in materials science

miniMD. A proxy for the force computations in a
typical molecular dynamics application

miniFE. An unstructured implicit finite element code
LAMMPS. Classical molecular dynamics simulation
code

4.2 Single Node Experiments

Our first experiment was conducted on a single node. As
there is no network in use, this experiment was designed to
precisely determine the impacts of memory management
on HPC application performance while the node is simulta-
neously executing a commodity application workload.

4.2.1 Testbed

For this experiment, we used a dedicated Dell R415 server
configured with two 6-core Opteron 4,174 CPUs and 16 GB
of RAM. The memory layout consisted of two NUMA zones
equally shared between the processors with memory inter-
leaving disabled. The operating system was a standard
Fedora 15 environment running an unmodified 2.6.43.8
(3.3.8) kernel. For the THP tests, the full system memory
was available to the operating system to use. For the
HugeTLBfs tests, 12 GB of the 16 GB was reserved at system
boot time for large pages. This memory was reserved evenly
across the two NUMA zones. For the HPMMAP tests, 12 GB
of memory was offlined, again split evenly across the two
NUMA zones.

4.2.2 Benchmark Configuration

We selected only the Mantevo benchmarks for the single
node experiments (HPCCG, CoMD, miniMD, miniFE). Each
benchmark was executed in weak scaling mode, meaning
that the benchmark’s runtime should remain close to con-
stant as the number of cores increases. Some of the bench-
marks require that the number of processors devoted to the
application is a power of two, so we limited the scaling to
eight of the system’s 12 cores. The input sizes for each
benchmark were then set so that roughly 12 GB of the 16 GB
of memory on the system were allocated to the application,
as this was the amount reserved for the HugeTLBfs and
HPMMAP memory pools.

For each memory manager, each benchmark was exe-
cuted in three different environments that represent varying
levels of competing commodity workloads. The first was a
baseline configuration in which no commodity workload is

476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

executed. The second, which we refer to as commodity proble For these configurations HugeTLBfs was the notable outlier

A, consisted of a single parallel kernel build. When the HPC
application was running on 1, 2, or 4 cores, this kernel build
was configured to run on 8 cores. Conversely, when the
HPC application was running on 8 cores, we limited the
parallel kernel build to 4 cores so as to not overcommit the
cores. However, the second commodity environment we
tested, referred to as commodity probPle Bconsisted of a
duplicate of the parallel kernel build. In both cases, the ker-
nel builds were not pinned to any memory or cores, while
the HPC application was configured to pin half of its cores
on each NUMA zone, while exactly half its memory was
allocated from each NUMA zone (for 1 core tests, all mem-
ory came from one zone). In all cases, the commodity work-
loads are managed by THP.

Asdiscussed in Section 2, Linux supports the “prefaulting”
of memory regions by way of the MAP_POPULATHlag for
mmapsystem calls. In order to optimize Linux’ memory man-
agement performance as much as possible, in addition to
the regular HugeTLBfs configuration we also tested a
HugeTLBfs configuration whereby all small pages allo-
cated via mmapwere prefaulted in this way. To do this, we
loaded a simple library via LD_PRELOADthat interposed
all mmapoperations and added the MAP_POPULATparam-
eter. For each benchmark, this optimization provided no
significant improvement and sometimes resulted in slightly
reduced performance. Thus, for clarity we have omitted
these configurations from our experiments.

4.2.3 Results

The results of these experiments are shown in Fig. 8. Each
data point in these figures reports both the average and
standard deviation of 10 runs of the benchmark, with the
standard deviation represented by error bars. As the left col-
umn of this figure demonstrates, three of the four bench-
marks exhibit similar performance for each memory
manager, with the HPCCG benchmark clearly favoring the
dedicated memory pools provided by HugeTLBfs and
HPMMAP. However, as competing workloads are added to
the system, the benefits of HPMMAP become more clear.
For commodity proble AHPMMAP provides superior perfor-
mance for the HPC benchmarks, reducing the runtime by an
average of 15 percent compared with THP and 9 percent
compared with HugeTLBfs across all benchmarks. In addi-
tion, the HPC benchmarks exhibit substantial consistency
improvements with runtime variance decreasing by a wide
margin. In every experiment we ran, HPMMAP avoided
interference from the commodity workload (seen by the
low runtime variance) even as the benchmark scaled up to
8 cores. For these experiments, THP in particular showed
substantial degradation as the core count increased, and in
each experiment exhibited dramatically less consistency
than the other configurations.

The right column of Fig. 8 shows the results of the
experiments when running with commodity proble BAgain,
these results show strong evidence that HPMMAP pro-
vides a substantially better environment for HPC applica-
tions than both HugeTLBfs and THP. On average
HPMMAP improves performance by 16 percent over THP
and 36 percent over HugeTLBfs, and just as in the earlier
experiments the runtime variance is dramatically lower.

in that it showed significant performance degradation as
the core count increased to 8. The reason for this is due to
the fact that the memory pressure reached a threshold at 8
cores due to the weak scaling properties of each bench-
mark. As we described earlier, HugeTLBfs is especially
susceptible to situations where the system is under signifi-
cant memory pressure. In this case, even though enough
memory was available to satisfy requests (as evidenced
by the results of THP and HPMMAP), HugeTLBfs intro-
duced significant overheads due to its effect on the alloca-
tion policy.

4.3 Multi-Node Scaling Experiments

In addition to the single node experiments, we also ran a set
of experiments to determine the scaling characteristics of
these environments while executing co-located HPC and
commodity workloads. As mentioned previously, we
designed experiments using both standard commodity-type
network connections (Gigabit Ethernet) as well as high
speed supercomputing-class interconnections (Infiniband).

4.3.1 Testbed

These experiments were conducted on an 8 node experi-
mental cluster in our research lab. Each node was config-
ured with two hyperthreaded 12-core Intel Xeon E5-2430
CPUs for a total of 24 cores. Each node had 24 GB of RAM,
with the memory layout consisting of two NUMA zones
equally shared between the processors with memory inter-
leaving disabled. Furthermore, each node was configured
with a Gigabit Ethernet device as well as a dual-port QDR
ConnectX-3 Infiniband NIC. The operating system on
each node was a standard Fedora 19 environment running
an unmodified 3.11.10 kernel. For the HPMMAP and
HugeTLBfs configurations, 18 GB of memory was reserved,
with 9 GB taken from each NUMA zone.

4.3.2 Benchmark Configuration

We selected the HPCCG and miniFE Mantevo benchmarks
as well as the LAMMPS simulation from ASC Sequoia for
these experiment. As in the previous experiment, each
benchmark was executed in weak scaling mode. Each
benchmark was configured to use 16 of the 24 cores on each
node, with CPU pinning techniques used to select 8 cores
from each NUMA zone. This allowed us to scale the bench-
marks up to 128 ranks (8 nodes with 16 cores each). For
these tests, we ran each benchmark with 16, 32, 64, and 128
application ranks across 1, 2, 4, and 8 nodes in order to max-
imize the memory utilization on each node.

Each benchmark was again executed with two different
profiles of competing workload. The first was an isolated
configuration in each each node only executed the HPC
benchmark. The other configuration, which we refer to as
commodity proble Cconsisted of two parallel kernel builds,
each using 4 cores, that consumed the remaining 8 cores of
the node. This workload was executed on each node that
was executing the HPC application. Both the HPC bench-
mark and the kernel builds were explicitly pinned to CPU
cores to reduce the impact of Linux scheduling routines on
the performance of the HPC benchmarks.

KOCOLOSKI AND LANGE: LIGHTWEIGHT MEMORY MANAGEMENT FOR HIGH PERFORMANCE APPLICATIONS IN CONSOLIDATED ENVIRONMENTS 477

180 T T T 180 T T T 180 T T T
HPMMAP — HPMMAP — HPMMAP —
160 [-Linux (THP) -mXeee E 160 [-Linux (THP) R E 160 [-Linux (THP) R B
. Linux (HugeTLBfs) R S . Linux (HugeTLBfs) Rt SR N Linux (HugeTLBfs) RERE 250
2 140 | g @ 140 | e @ 140 |]
Q Q Q Bt
e ; @ : @ P
o 120 | A o> 120 | A > 120 F
£ E £ L
€ 100 - 1 € 100 g€ 100 | X B
=] - =] =] -
c X T T _
80 80 80
60 60 60 ¥)
1 2 4 8
Application Cores Application Cores Application Cores
(a) HPCCG (iso) (b) HPCCG (profile A) (c) HPCCG (profile B)
400 T T 400 T T 400 [T T
HPMMAP i HPMMAP S HPMMAP — :
Linux (THP) - Kme Linux (THP) - Linux (THP) - :
- 350 | Linux (HugeTLBfs) e 4 & 350 | Linux (HugeTLBfs) K i — 350 | Linux (HugeTLBfs) K F
o o 3} o
@ @ 9] .
L L L S
E 300 B E 300 B g 300 - -
€ € €
=] =] 3
T 250 | . T 250 T 250 |
200 1 1 1 1 200 1 1 1 200 1 1 1 1
1 2 4 8 1 4 8 1 2 4 8
Application Cores Application Cores Application Cores
(d) CoMD (iso) (e) CoMD (profile A) (f) CoMD (profile B)
900 T T T 900 T T T 900 T T T
HPMMAP — HPMMAP — HPMMAP — h
800 [-Linux (THP) =X - 800 [-Linux (THP) %= R 800 [-Linux (THP) %= *
Linux (HugeTLBfs) EEE R Linux (HugeTLBfs) RERE SR Linux (HugeTLBfs) RERE SR S
w 700 | B w 700 | 1 w 700 - R
O O O 0
))) ‘
(o] (o] (o]
£ £ £
€ € €
=3 =} 3
c i i
Application Cores Application Cores Application Cores
(g) miniMD (iso) (h) miniMD (profile A) (i) miniMD (profile B)
130 T T T 130 T T T 130 T T T
HPMMAP — HPMMAP — HPMMAP — B
120 FLinux (THP) == b 120 FLinux (THP) - 1 120 FLinux (THP) - B
110 | Linux (HugeTLBfs) R S i 110 | Linux (HugeTLBfs) Rt SR i 110 | Linux (HugeTLBfs) RERE 250 ;_
[2] [2] (2]
g 100t - g g 100 f A
£ £ £ r R
< IS 1S 80 - .
=] =] =] .
i o T 70} ¥
60 [k R 1
50 1 1 1

Application Cores

(j) miniFE (iso)

Application Cores

(k) miniFE (profile A)

Application Cores

(I) miniFE (profile B)

Fig. 8. Results of the single node experiments, demonstrating HPC benchmark performance in isolated configurations (iso) as well as in configura-

tions with competing commaodity workloads (commodity profiles A/B).

For these experiments, we elected to use the Linux pre-
faulting optimization for the HugeTLBfs experiments, in
order to provide a memory management experience in
Linux as similar as possible to HPMMAP. While our experi-
ences with the single node experiments showed no signifi-
cant benefit from the prefaulting of mmaped small pages, it
is possible that prefaulting on multiple nodes could
improve performance by effectively synchronizing the over-
heads of page fault handling across application ranks.

4.3.3 Ethernet Multi-Node Results

Fig. 9 illustrates the results of our multi-node experiments
using an Ethernet network. As in the single node experi-
ments, each data point in this figure represents the average

of at least 10 runs of the benchmark. Compared to the single
node experiments we observed more consistent perfor-
mance for each memory manager, and thus for clarity we
do not report standard deviation error bars.

The left column of the figure shows the performance for
the HPC benchmarks in the isolated workload deployment
where no competing workload is executed. For the HPCCG
and miniFE benchmarks, it is clear that the HugeTLBfs and
HPMMAP environments provide superior performance to
THP, likely due to the presence of pre-allocated memory
pools that can perform large page mappings synchronously
with respect to application allocation requests. On the other
hand, for LAMMPS each memory manager exhibits similar
performance.

478

80

80

HPMMAP
Linux (THP)
[Linux (HugeTLBfs, PF)

HPMMAP
Linux (THP) ¢~
[Linux (HugeTLBfs, PF)

.
3
X
s
o
3

Runtime (secs)
Runtime (secs)

55 Lt L L L

16 32 64 128
Application Cores Application Cores

(a) HPCCG (iso) (b) HPCCG (profile C)

100 T 100

HPMMAP

o+ HiPMMAP
95 |-Linux (THP) -] 95 |-Linux (THP)
Linux (HugeTLBfs, PF) K Linux (HugeTLBfs, PFTHP)
90 R 9 pemee N
- B S 85 L

80 |

Runtime (secs)
Runtime (secs)

75 b

70 L L L L 70 Lt L L L
16 32 64 128 16 32 64 128

Application Cores Application Cores
(c) miniFE (iso) (d) miniFE (profile C)

T 190

190

FHPMMAP ‘
Linux (THP)
[Linux (HugeTLBfs, PF)

HiPMMAP
Linux (THP)
188 I Linux (HugeTLBfs, PF)

¥ 188

186 1

184 |2

Runtime (secs)
Runtime (secs)

182 i

180 Lt L L

L 180 Lt L L L
16 32 64 128 16 32 64 128

Application Cores Application Cores

(e) LAMMPS (iso) (f) LAMMPS (profile C)

Fig. 9. Results of the Ethernet multi-node experiments, demonstrating
HPC benchmark performance in isolated configurations (iso) as well as
in configurations with a competing commodity workload (commodity
profile C).

Interestingly, the addition of a competing commodity
workload has different effects on the three benchmarks. For
HPCCG and LAMMPS, the commodity workload causes a
convergence between the different memory managers, while
miniFE shows a clear divergence as HPMMAP provides
superior performance. For HPCCG and LAMMYPS, it is likely
that different overheads experienced on separate nodes are
not propagated through the network, but rather that com-
munication over the network itself becomes the bottleneck to
performance. Conversely, it is likely that miniFE is not net-
work-bound, and thus individual node overheads remain
significant as the application begins to scale. This result dem-
onstrates that variations and improvements in single node
performance can be nullified in multi-node configurations
by additional bottlenecks, such as network contention.

4.3.4 Infiniband Multi-Node Results

Fig. 10 shows the results of our multi-node experiments
using an Infiniband interconnect between the nodes. The
left column of the figure shows the results of the isolated
configuration in which only the HPC benchmark is execut-
ing on each node. The HPCCG and miniFE results are
similar to the isolated configuration in the Ethernet experi-
ment: HPMMAP and HugeTLBfs exhibit superior perfor-
mance compared to THP. However, in this experiment it is
clear that HPMMAP provides a better environment for
LAMMPS to scale than either Linux memory manager
even without the presence of competing workloads. This
result demonstrates that the reduction in runtime variance
commonly demonstrated by HPMMAP in the single node

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

80

80

FiPMMAP
Linux (THP)
K B 75 I-Linux (HugeTLBfs, PF)

HPMMAP
Linux (THP)
75 I-Linux (HugeTLBfs, PF)

70 70

65 65 [y

Runtime (secs)
Runtime (secs)

60 60 | B

55

55 Lt L L L
16 32 64 128 16 32 64 128

Application Cores Application Cores

(a) HPCCG (iso) (b) HPCCG (profile C)

T 100

100

fiPMmAP

—— HPMMAP ——
95 |-Linux (THP) e 95 |-Linux (THP) e
Linux (HugeTLBfs, PF) kK Linux (HugeTLBfs, PF) K

90
85

Runtime (secs)
Runtime (secs)

80

75 b

70 Lt L L L 70 Lt L L L
16 32 64 128 16 32 64 128

Application Cores Application Cores
(c) miniFE (iso) (d) miniFE (profile C)

T 190

190

HPMMAP

Linux (THP)
BEOE. 188 [Linux (HugeTLBfs, PF) ¥
186 - e

T

PMMAP
Linux (THP)
188 I-Linux (HugeTLBfs, PF)

184 [y .oon”

Runtime (secs)
Runtime (secs)

182 i

180 L L L L
16 32 64 128

Application Cores

(f) LAMMPS (profile C)

Application Cores

(e) LAMMPS (iso)

Fig. 10. Results of the Infiniband multi-node experiments, demonstrat-
ing HPC benchmark performance in isolated configurations (iso) as
well as in configurations with a competing commodity workload (com-
modity profile C).

experiments begins to lead to better performance even at
relatively small scales.

The result of the experiments executing commodity work-
load Ccan be seen in the right column of the figure. While
the miniFE results are very similar to the miniFE results
from the Ethernet experiment, both HPCCG and LAMMPS
show a divergence, demonstrating that HPMMAP provides
the best scalability in the face of local-node competition.
Unlike the previous experiment in which the gigabit net-
work likely became the bottleneck to scalability, in this case
the network better supports the HPC workloads, and as a
result the performance improvements demonstrated on a
single node result in overall improvement on multiple
nodes. In particular, as LAMMPS continues to scale, the per-
formance gap between HPMMAP and both Linux memory
managers continues to widen. While the HPCCG results are
not as drastic, the performance gap is also widest as 128
ranks, which appears to indicate better scaling prospects for
HPMMAP than either HugeTLBfs or THP.

5 RELATED WORK

Most research addressing the shortcomings of commodity
OSes for HPC applications can be categorized into one of
two classes: replace the commodity OS with a lightweight
OS, or selectively “fix” or adapt commodity OSes to support
HPC applications by either adding or removing features.
Research from the former category has lead to the devel-
opment of LWKs such as Kitten [14] and CNK [15], which
are both directly designed to support HPC applications.

KOCOLOSKI AND LANGE: LIGHTWEIGHT MEMORY MANAGEMENT FOR HIGH PERFORMANCE APPLICATIONS IN CONSOLIDATED ENVIRONMENTS 479

Other approaches have leveraged virtualization to provide
LWKSs to otherwise unmodified commodity host environ-
ments [23], [25]. While these projects have demonstrated the
effectiveness of LWKs, they require that applications be
explicitly built or modified to run in feature-limited envi-
ronments, a difficult task that often requires the elimination
of dependencies on commodity features such as file sys-
tems, signals, etc. Furthermore, these types of systems are
built to support single application environments, and thus
are unsuitable for the multi-workload configurations we
consider in this work.

More recently, multiple research efforts have been
made to support HPC applications in next generation
exascale systems. Hobbes from Sandia National Labs [26]
and Argo from Argonne National Lab [27] have both advo-
cated the development of a “multi-enclave” OS/R in
which multiple isolated kernels can be deployed on the
same local hardware resources, resulting in a customizable
OS/R capable of supporting mixed workload deploy-
ments. Compared to these approaches, HPMMAP can
more easily support unmodified Linux applications, as
these projects propose the deployment of LWKs that are
not likely to natively support many unmodified Linux
applications. Furthermore, these projects are tasked with
creating an exascale OS/R, while our work is more
focused on supporting HPC performance in more general-
purpose HPC cluster environments.

FusedOS from IBM [28], McKernel from the University of
Tokyo [29], and mOS from Intel [30] have each investigated
techniques for providing both a lightweight environment
and a fullweight environment on the same local compute
nodes. Each of these projects allows for heterogeneous sys-
tem software configurations by running an LWK-like envi-
ronment on a subset of a machine’s physical resources
(cores, memory blocks, I/O devices) while running Linux
on another disjoint subset. The result is a system that can
provide a lightweight execution environment for an HPC
application, but can provide Linux services such as system
call and exception handling by forwarding requests
between partitions. While these approaches are well-suited
for mixed workloads and have similar goals to HPMMAP,
they are considerably more heavyweight than HPMMAP,
and to our knowledge the techniques used therein (system
call/exception forwarding) are not well-studied in multi-
node HPC cluster environments. HPMMAP presents a solu-
tion that is more easily deployable and suitable for HPC
clusters and has been demonstrated to scale well to a small
number of nodes.

Other research has focused not on replacing commodity
OSes with LWKSs, but rather on fixing the subsystems that
make them problematic for HPC workloads. The ZeptoOS
[31] project took the approach of modifying the Linux vir-
tual memory management layer to eliminate the overheads
that it imposes. Their solution consisted of preallocating
very large regions of memory from the OS at boot time and
providing a single HPC-execution environment that maps
these regions with large pages. This approach effectively
eliminates all overheads associated with virtual memory
management, but as the developers themselves admit [11],
Big Memory is not a reasonable solution for general purpose
OSes. Cray’s CNL [12] is another approach focused on

optimizing Linux for HPC workloads. CNL provides a run-
time environment based on a highly-modified version of
the Linux kernel. In comparison to these approaches, our
approach is more amenable to commodity environments as
it does not modify existing memory management schemes
that are optimized for commodity workloads, but rather
creates an additional lightweight memory management
layer that can exist in parallel with existing subsystems.

6 CONCLUSION

In this work, we proposed High Performance Memory
Mapping and Allocation Platform and showed that the
lightweight memory management it provides is capable of
yielding a level of isolation typically unattainable in com-
modity OS/Rs. HPMMAP borrows heavily from the LWK
research community to impose a memory management
system over partitioned hardware that provides low over-
head and consistent access even in the face of significant
pressure from competing application workloads. We dem-
onstrated that applications using HPMMARP experience up
to 50 percent reduction in runtime and execute in a signifi-
cantly less variable environment in the face of competing
commodity workloads.

ACKNOWLEDGMENTS

B. Kocoloski is the corresponding author.

REFERENCES

[11 J. J. Rehr, F. D. Vila, J. P. Gardner, L. Svec, and M. Prange,
“Scientific computing in the cloud,” Comput. Sci. Eng.vol. 12,
no. 3, pp. 34-43, 2010.

[2] J. Napper and P. Bientinesi, “Can cloud computing reach the

top500?” in Proc. Combined Workshops Unconventional High Perform.

Comput. Workshop Memory Access WorksHfj9, pp. 17-20.

[3] K.-L.Ma, C. Wang, H. Yu, and A. Tikhonova, “In-situ processing
and visualization for ultrascale simulations,” in Proc. J. Phys. Conf.
Seriesvol. 78, no. 1, Jun. 2007.

[4] D. Tiwari, S. Vazhkudai, Y. Kim, X. Ma, S. Boboila, and P.
Desnoyers, “Active flash: Towards energy-efficient, in-situ data
analytics on extreme-scale machines,” in Proc. 11th USENIX Conf.
File Storage TechnpR013, pp. 119-132.

[5] H. Viswanathan, E. K. Lee, I. Rodero, D. Pompili, M. Parashar,
and M. Gamell, “Energy-aware application-centric VM allocation
for hpc workloads,” in Proc. IEEE Int. Symp. Parallel Distrib. Pro-
cess. Workshpp011, pp. 890-897.

[6] F.Ferstl. Consolidate big data and HPC via virtualization—a good
idea?. [Online]. Available: http://www.wheregridenginelives.
com/content/consolidate-big-data-and-hp c-virtualization-good-
idea

[7] A. Gupta, D. Milojicic, and S. Balle, “HPC-Aware VM placement
in infrastructure clouds,” in Proc. IEEE Int. Conf. Cloud Eng2013,
pp- 11-20.

[8] A.Gupta, D. Milojicic, and L. V. Kalé, “Optimizing VM placement
for HPC in the cloud,” in Proc. 2012 Workshop Cloud Serv., Fed., 8th
Open Cirrus Summit2012, pp. 1-6.

[9]1 J.Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe, D. Thompson, and

M. Wong, “Resource monitoring and management with OVIS to

enable HPC in cloud computing environments,” in Proc, 23rd

IEEE Int. Parallel Distrib. Process. Sym009, pp. 1-8.

B. Kocoloski, J. Ouyang, and J. Lange, “A case for dual stack virtu-

alization: Consolidating HPC and commodity applications in the

cloud,” in Proc. 3rd ACM Symp. Cloud Compyt2012.

K. Yoshii, K. Iskra, P. Broekema, H. Naik, and P. Beckman,

“Characterizing the performance of big memory on blue gene

linux,” in Proc. Int. Conf. Parallel Process. Worksho909,

pp- 65-72.

L. Kaplan, “Cray CNL,” in Proc. FastOS Pl Meeting and Workshop

2007.

[10]

[11]

[12]

480

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.2, FEBRUARY 2016

X.-J. Yang, X.-K. Liao, Q.-F. Hu, J.-Q. Song, and].-S. Su, “The
TianHe-1A supercomputer: Its hardware and software,” J. Com-
put. Sci. Technolvol. 26, pp. 344-351, 2011.

J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia,
P. Bridges, A. Gocke, S. Jaconette, M. Levenhagen, and R. Bright-
well, “Palacios and kitten: New high performance operating sys-
tems for scalable virtualized and native supercomputing,” in
Proc. 24th IEEE Int. Parallel Distrib. Process. Symp. (IPDP3)10,
pp- 1-12.

M. Giampapa, T. Gooding, T. Inglett, and R. Wisniewski,
“Experiences with a lightweight supercomputer kernel: Lessons
learned from blue gene’s CNK,” in Proc. ACM/IEEE Int. Conf. High
Perform. Comput., Netw., Storage An&2010, pp. 1-10.

R. Brightwell, R. Riesen, K. Underwood, T. Hudson, P. Bridges,
and A. Maccabe, “A performance comparison of linux and a light-
weight kernel,” in Proc. IEEE Int. Conf. Cluster Compuyt2003,
pp- 251-258.

C. Vaughan, J. VanDyke, and S. Kelly, “Application performance
under different XT operating systems,” in Proc. Cray User Group
Meeting 2008.

E. Shmueli, G. Almasi, J. Brunheroto, J. Castanos, G. Dozsa,
S. Kumar, and D. Lieber, “Evaluating the effect of replacing CNK
with linux on the compute-nodes of blue gene/L,” in Proc. 22nd
Int. Conf. Supercomput2008, pp. 165-174.

K. Ferreira, P. Bridges, and R. Brightwell, “Characterizing applica-
tion sensitivity to OS interference using kernel-level noise

injection,” in Proc. ACM/IEEE Int. Conf. High Perform. Comput., |,

Netw., Storage Ana) 2008, pp. 1-12.

J. Corbet. (2010). Transparent Huge Pages in 2.6.38. [Online].
Available: https://lwn.net/Articles /423584 /

A. Morari, R. Gioiosa, R. Wisniewski, B. Rosenburg, T. Inglett, and
M. Valero, “Evaluating the Impact of TLB Misses on Future HPC

Systems,” in Proc. 26th IEEE Int. Parallel Distrib. Process. Symp.

2012, pp. 1010-1021.

M. Gorman. (2010). Huge Pages Part 1 (Introduction). [Online].
Available: https:/ /lwn.net/Articles /374424 /

B. Kocoloski and]. Lange, “Better than native: Using virtualiza-
tion to improve compute node performance,” in Proc. 2nd Int.
Workshop Runtime and Oper. Syst. Supercomputers (ROEBD.

S. Goswami, “An Introduction to KProbes,” Webpage, https://
Iwn.net/Articles/132196/, 2005.

S. Thibault and T. Deegan, “Improving Performance by Embed-
ding HPC Applications in Lightweight Xen Domains,” in Proc.
2nd Workshop Syst.-Level Virtualization High Perform. CompQ@08,
pp- 9-55.

R. Brightwell, R. Oldfield, A. Maccabe, and D. Bernholdt,
“Hobbes: Composition and virtualization as the foundations of an
extreme-scale OS/R,” in Proc. 3rd Int. Workshop Runtime Oper.
Syst. Supercompyt2013, pp. 2:1-2:8.

P. Beckman. (2014). Argo: An Exascale Operating System.
[Online]. Available: http://www.mcs.anl.gov/project/argo-exas-
cale-operating-system

Y. Park, E. Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg,
K. Ryu, and R. Wisniewski, “FusedOS: Fusing LWK performance
with FWK functionality in a heterogeneous environment,” in Proc.
24th |EEE Int. Symp. Comput. Archit. High Perform. Compu2012,
pp- 211-218.

H. Tomita, M. Sato, and Y. Ishikawa, “Japan overview talk,” in Proc.
2nd Int. Workshop Big Data ExtremeScale Comput. (BDECQQ#.

R. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen,
“mOS: An architecture for extreme-scale operating systems,” in
Proc. 4th Int. Workshop Runtime Oper. Syst. Supercomyi{i14.

P. Beckman, K. Iskra, K. Yoshii, and H. Naik. (2011). ZeptoOS
Project Website. [Online]. Available: http://www.mcs.anl.gov/
research/ projects/zeptoos/

Brian Kocoloski received the BS degree in
computer science from the University of Dayton
and is working towards the PhD degree in the
Department of Computer Science at the University
of Pittsburgh. His research interests are generally
in lightweight operating systems and high-
performance systems. He has also interned in the
Scalable System Software Department at Sandia
National Laboratories, where his research focused
on operating and runtime systems for next genera-
tion supercomputers and exascale systems.

John Lange received the BS, MS, and
PhD degrees in computer science as well as the
BS degree in computer engineering from North-
western University. He is an assistant professor
in the Department of Computer Science at the
University of Pittsburgh. His research specializes
in high-performance computing and operating
systems, as well as networking, virtualization and
distributed systems. His current focus lies in
the area of specialized operating systems for
supercomputing environments, as well as user-

centric data management systems.

For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

