
System-Level Support for Composition of Applications

Brian Kocoloski
John Lange

Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260 USA
{briankoco,jacklange}

@cs.pitt.edu

Hasan Abbasi
David E. Bernholdt

Terry R. Jones
Oak Ridge Nat’l Laboratory

P.O.B. 2008
Oak Ridge, TN 37831 USA

{habbasi,bernholdtde,trjones}
@ornl.gov

Jai Dayal
Georgia Institute of

Technology
College of Computing

Atlanta, GA 30332 USA
jdayal3@gatech.edu

Noah Evans
Michael Lang

Los Alamos National
Laboratory

Los Alamos, NM 87544 USA
noah.evans@gmail.com,

mlang@lanl.gov

Jay Lofstead
Kevin Pedretti

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87123 USA
{gflofst,ktpedre}

@sandia.gov

Patrick G. Bridges
Dept. of Computer Science
University of New Mexico

Albuquerque, NM 87131 USA
bridges@cs.unm.edu

ABSTRACT
Current HPC system software lacks support for emerg-
ing application deployment scenarios that combine one or
more simulations with in situ analytics, sometimes called
multi-component or multi-enclave applications. This paper
presents an initial design study, implementation, and evalu-
ation of mechanisms supporting composite multi-enclave ap-
plications in the Hobbes exascale operating system. These
mechanisms include virtualization techniques isolating ap-
plication custom enclaves while using the vendor-supplied
host operating system and high-performance inter-VM com-
munication mechanisms. Our initial single-node perfor-
mance evaluation of these mechanisms on multi-enclave sci-
ence applications, both real and proxy, demonstrate the abil-
ity to support multi-enclave HPC job composition with min-
imal performance overhead.

Categories and Subject Descriptors
D.4.7 [Operating Sytems]: Organization and Design;
C.5.1 [Computer System Implementation]: Super (very
large) computers; C.1.2 [Multiprocessors]: Parallel Pro-
cessors

1. INTRODUCTION
Emerging HPC applications are increasingly composed of

multiple communicating, cooperating components. This in-
cludes coupled simulation + analytics workflows, coupled
multiphysics simulations and scalable performance analysis

c© 2015 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
ROSS ’15, June 16, 2015, Portland, Oregon, USA
Copyright 2015 ACM 978-1-4503-3606-2/15/06 ...$15.00.
http://dx.doi.org/10.1145/2768405.2768412

and debugging systems [35, 37, 27, 25, 30, 32, 7]. This
emergence is a result of the changing compute/memory/IO
balance of high-end computer systems, the push toward in-
creasing physical fidelity and realism in simulations motivat-
ing increasing use of coupled multiphysics simulations, and
the generally increasing size and richness of data generated.
Additionally, a compositional approach has the potential to
help HPC application developers address a wider range of
scientific problems; quickly prototype and develop new sim-
ulations; customize application behavior to underlying sys-
tem communication, I/O and memory characteristics; and
more easily handle the myriad challenges of extreme-scale
scientific computing.

System software support is both essential to enable ap-
plication composition and lacking in current HPC system
software stacks. For example, current HPC systems are op-
timized for allocating a disjoint subset of system nodes to
a single application. Most HPC OSes are not optimized to
support or enable co-location and communication between
cooperating executables. This has forced HPC application
designers to combine multiple components into a single ex-
ecutable using hard-to-maintain library tricks that result in
multi-gigabyte executables or to split components spatially
between nodes, with the latter approach increasing data
movement, power, and general resource usage compared to
systems supporting co-location [38].

This paper presents a preliminary design study and initial
evaluation of an operating system/runtime (OS/R) environ-
ment, Hobbes, with explicit support for composing HPC
applications from multiple cooperating components. The
design is based on our previously presented vision [9] and
makes systematic use of both virtualization and lightweight
operating systems techniques to support multiple commu-
nicating application enclaves per node. In addition, it also
includes efficient inter-enclave communication tools to en-
able application composition. Furthermore, we show that
our Hobbes OS/R supports the composition of applications
across multiple isolated enclaves with little to no perfor-
mance overhead.

The main contributions of this work are:
• An analysis of application requirements for composi-

tion in next-generation HPC systems;
• The design of an integrated HPC operating system and

runtime (OS/R) environment that meets those require-
ments;

• A prototype implementation of the key components of
this design; and

• An initial single node evaluation of the performance of
this implementation on multi-enclave HPC benchmark
tests.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of HPC application composition
use-cases and ways such applications can benefit from the
environment provided by the Hobbes OS/R. Section 3 de-
scribes the high-level design aspects of the Hobbes OS/R
to support composition, and presents a detailed description
of the key software components comprising the OS/R en-
vironment. Section 4 follows with a description of three
example applications from the simulation + analytics cate-
gory and demonstrates their implementation in the current
Hobbes OS/R prototype, while Section 5 presents a prelimi-
nary evaluation of two of these applications in a set of multi-
enclave environments. Section 6 describes related work and
Section 7 discusses the results presented as well as future
work. Section 8 provides a final summary.

2. APPLICATION COMPOSITION
While computational science and engineering applications

embody a great deal of diversity, we have identified a number
of composite application generic use case categories. These
include:

• Simulation + analytics involves a simulation com-
ponent communicating with one providing data ana-
lytics, visualization, or similar services. In most cases,
data is presumed to flow from the simulation to the
analytics component one way. However computational
steering could introduce a reciprocal data flow, shared
data, and/or a control interaction from the analytics
to the simulation. While dynamic compositions are
possible, we expect most applications of this type to
involve static compositions where the components and
their deployments are defined in advance and stay fixed
throughout the execution of the application. Three ex-
amples are described in this paper.

• Coupled multiphysics simulations involve multi-
ple simulation components, each modeling different
physics, working cooperatively. Data may flow one-
way, two-ways, or may be shared between components.
There may also be control interactions between compo-
nents. Coupled multiphysics simulations may be either
static or dynamic. For example, there are an increas-
ing number of examples in the literature of complex
simulations in which new computational tasks (com-
ponents, in this context) are instantiated on demand
during a simulation and have a lifetime much shorter
than the overall simulation. Examples of this category
include [25, 30, 32, 7].

• Application introspection is a novel way of think-
ing about activities that need deep access to an appli-
cation such as performance monitoring or debugging.
Whereas today such applications usually involve com-
plex combinations of simulation and “tool” processes,

which must “attach” to them, in the Hobbes environ-
ment, such applications could be cast as co-located
enclaves for which the communications can be defined
as appropriate.

Composite applications can benefit from the Hobbes envi-
ronment in several ways. Components may be designed with
very different requirements from the underlying operating
system. For example, a simulation component with few OS
requirements might run well in a lightweight kernel (LWK)
environment with minimal local performance overheads and
inter-node jitter while an analytics component might require
the richer services provided by a full Linux OS. Or two com-
ponents in a coupled simulation might require different, in-
compatible runtime systems when used within the same exe-
cutable or might not share resources well. Composition also
allows increased component deployment flexibility in ways
that can both accelerate computation and reduce resource
requirements. For example, simulation and analytics com-
ponents that require different runtime environments can be
consolidated on the same node allowing communication to
occur at memory speed rather than over a network.

3. THE HOBBES OS/R
The design of the Hobbes OS/R has been guided by three

main considerations:
• The OS/R should allow dynamic (re-)configuration at

runtime of hardware resource assignments and system
software environments.

• The OS/R should provide a single, unified user space
runtime API inside each enclave to support configura-
tion flexibility and minimize application development
effort.

• The OS/R should provide configurable isolation levels
for each enclave in the system to meet the performance
isolation requirements of each application.

We have designed the Hobbes OS/R architecture as a con-
figurable runtime environment that allows dynamic config-
uration of isolated enclaves consisting of partitioned hard-
ware resources and specialized system software stacks. The
Hobbes environment provides a number of features to sup-
port composite applications including APIs for communica-
tion and control abstractions as well as languages describing
the interactions, compositions, and deployment configura-
tions of the target system environment.

In order to make our approach accessible to existing ap-
plication code bases, we have sought to ensure that compo-
sition can be achieved with minimal developer effort. The
design of our composable architecture is focused on the high
level goal of allowing exascale users to seamlessly compose
application components at runtime as part of a job defini-
tion. Application components consist of individual work-
loads capable of functioning independently inside dedicated
OS/R instances. Each component is coupled to others using
a common inter-enclave communication framework that is
portable across each OS/R environment. This approach al-
lows unmodified application binaries to be deployed into ar-
bitrary enclave topologies without modification. Moreover,
our system leverages existing APIs to provide wide porta-
bility (namely the XPMEM and ADIOS library interfaces)
for existing code bases without modification.

The high-level overview of our design is illustrated in Fig-
ure 1. As the foundation for our architecture, we have based
our work on the Kitten lightweight kernel [22] and the Pisces

Kitten Co-Kernel
(Pisces)

Hardware

A
D

IO
S

X
EM

EMHobbes
Runtime

Application

Operating
System

Simulation

Linux

TC
A

SM

TC
A

SM

A
D

IO
S

X
EM

EM

Analytics

Figure 1: The Hobbes OS/R Supporting an Appli-
cation Composed in Two Enclaves

lightweight co-kernel architecture [28] along with the Pala-
cios VMM [22, 21] to support Virtual Machine based en-
claves. Our approach provides the runtime provisioning of
isolated enclave instances that can be customized to support
each application component. Additionally, our approach al-
lows application composition through the use of cross en-
clave shared memory segments through the XEMEM shared
memory system [20], whose application interface can be ac-
cessed using existing I/O mechanisms such as ADIOS [24]
or TCASM [5].

3.1 Operating System Components

Kitten and Palacios. Kitten [22] is a special-purpose OS
kernel designed to provide a simple, lightweight environment
for executing massively parallel HPC applications. Like pre-
vious lightweight kernel OSes, such as Catamount [18] and
CNK [14], Kitten uses simple resource management policies
(e.g., physically contiguous memory layouts) and provides
direct user-level access to network hardware (OS bypass). A
key design goal of Kitten is to execute the target workload
– highly-scalable parallel applications with non-trivial com-
munication and synchronization requirements – with higher
performance and more repeatable performance than is pos-
sible with general purpose operating systems. Kitten also
supports virtualization capabilities through its integration
with Palacios.

Palacios [22] is an open source VMM designed to be em-
beddable into diverse host OSes and currently fully supports
integration with Linux and Kitten host environments. When
integrated with Kitten co-kernel hosts, Kitten and Palacios
act as a lightweight hypervisor providing full system vir-
tualization and isolation for unmodified guest OSes. The
combination of Kitten and Palacios has been demonstrated
to provide near native performance for large-scale HPC ap-
plications using lightweight VMs running atop a Kitten host
environment [21].

Pisces Co-Kernel Architecture. Pisces [28] is a co-kernel
architecture designed to allow multiple specialized OS/R
instances to execute concurrently on the same local node.
Pisces enables the decomposition of a node’s hardware re-
sources (CPU cores, memory blocks, and I/O devices) into
partitions that are fully managed by independent system
software stacks, including OS kernels, device drivers, and

I/O management layers. Using Pisces, a local compute node
can initialize multiple Kitten OS instances as co-kernel en-
claves executing alongside an unmodified Linux host OS.
Furthermore, by leveraging Palacios support, virtual ma-
chine instances can be created on top of these co-kernels as
well. Pisces supports the dynamic assignment and revoca-
tion of resources between enclaves. Full co-kernel instances
may be created and destroyed in response to workload re-
quirements (e.g., application launch and termination), or in-
dividual resources may be revoked from or added to running
instances. Specific details of these operations are presented
elsewhere [28].

3.2 Runtime Components

XEMEM: Cross Enclave Memory. The XEMEM shared
memory architecture [20] supports application-level shared
memory communication across enclaves (co-kernels and/or
Palacios VMs). XEMEM exports a user-level API that is
backwards compatible with the API exported by SGI/Cray’s
XPMEM shared memory implementation for Linux sys-
tems [36], which allows processes to selectively export re-
gions of their address space to be mapped by other processes.
Because the XEMEM API is supported across each enclave
OS/R environment, any application targeting the API can
be deployed across any multi-enclave topology without mod-
ification. XEMEM provides a single global shared memory
address space through the use of globally unique memory
segment IDs managed by a global name service. In addition
to naming, the name service also provides global discovery
of shared memory regions allowing applications to transpar-
ently map memory regions from any other OS/R instance.

ADIOS. The Adaptable I/O System (ADIOS) [24] is a
high performance I/O middleware for enabling flexible data
movement for leadership class scientific applications. In ad-
dition to simple I/O to a file system, ADIOS supports scal-
able data movement between multiple applications and be-
tween a simulation and multiple workflow components with-
out changing the writing or reading syntax. In past work,
ADIOS has been used as the interface for enabling online
streaming[37], coupling multi-physics applications [13], and
performing interactive visualization [11]. The design of the
ADIOS interface has expanded since its inception to provide
a common policy for accessing data from disks (file based
methods) and for accessing data from the network (stream
based methods). This common interface allows high per-
formance applications to work with files and streams with
minimal modifications.

For this work, we created a pair of new ADIOS transport
methods for writing and reading using the XEMEM shared
memory segments to work in a cross-enclave configuration.
This affords changing from writing to or reading from a
file, another node, or shared memory simply by changing
the transport method selected for the output or input. We
demonstrate this using the same unchanged application for
multiple deployments.

TCASM. Transparently Consistent Asynchronous Shared
Memory (TCASM) [5] is a shared memory based transport
that allows a producer process, typically an HPC applica-
tion, to share read-only data in situ with an observer pro-
cess, typically analytics or checkpointing, without needing

to rely on manual synchronization between the producing
and observing process. TCASM is implemented using copy
on write semantics: the producer registers a region of mem-
ory corresponding to its data and then exports a snapshot
of that memory when it reaches a consistent state. The im-
plementation of TCASM varies according to its host system.
In Linux, TCASM is implemented on top of the Linux VMA
subsystem. In Kitten, TCASM is implemented as a set of
extensions to the aspace system, Kitten’s memory manage-
ment layer.

However, TCASM alone is insufficient to implement cross-
enclave synchronization. To enable sharing via TCASM in
Hobbes, we needed to share memory not just across virtual
memory regions, but across operating systems as well. To
enable this, we integrated TCASM virtual regions with XE-
MEM cross-enclave communication. TCASM provides the
copy-on-write semantics to an individual shared memory re-
gion on an enclave while XEMEM shares the read only snap-
shot to other enclaves and provides a mechanism for making
those regions accessible.

4. EXAMPLE APPLICATIONS
To demonstrate the capabilities of the Hobbes OS/R to

provide effective application composition we have focused
on three example applications that represent common HPC
compositions of the simulation + analytics type. These in-
volve molecular dynamics, plasma microturbulenece, and
neutronics with corresponding analytics codes. These appli-
cations had previously been coupled using ADIOS (molec-
ular dynamics and plasma microturbulence) and TCASM
(neutronics), and no changes were required at the applica-
tion level to deploy them in the Hobbes environment utiliz-
ing versions of ADIOS or TCASM which had been ported
to use XEMEM.

4.1 Crack Detection in Molecular Dynamics
Simulations

LAMMPS (Large Scale Atomic/Molecular Massively Par-
allel Simulator) [29] is a molecular dynamics simulation used
across a number of scientific domains, including materials
science, biology, and physics. It is written with MPI (and
also has options to use OpenMP and CUDA) and performs
force and energy calculations on discrete atomic particles.
After a number of user-defined epochs, LAMMPS outputs
atomistic simulation data (positions, atom types, etc.), with
the size of this data ranging from megabytes to terabytes
depending on the experiment being performed.

SmartPointer [35] is an associated analytics pipeline that
ingests and analyzes LAMMPS output data to detect and
then scientifically explore plastic deformation and crack gen-
esis. Effectively, the LAMMPS simulation applies stress to
the modeled material until it cracks and the goal of the
SmartPointer analysis is to understand the geometry of the
region around that initial break. The SmartPointer analyt-
ics toolkit implements these functions to determine where
and when plastic deformation occurs and to generate rele-
vant information as the material is cracked. The toolkit itself
consists of a set of analysis codes that are decomposed as sep-
arately deployable applications that are chained together via
data transfers identified by named channels, i.e., an ADIOS
“file name.” Further details of many of the SmartPointer
functions can be found elsewhere [35]. For this set of experi-
ments, we focus on the“Bonds”analytics code, which ingests

LAMMPS atomistic data and performs a nearest neighbor
calculation to output a bond adjacency list, which is a pair-
wise representation indicating which atoms bonded together.

4.2 Plasma Microturbulence
The Gyrokinetic Toroidal Code (GTC) [26] is a 3-

Dimensional Particle-In-Cell code used to study micro-
turbulence in magnetic confinement fusion from first prin-
ciples plasma theory. It outputs particle data that includes
two, 2D arrays for electrons and ions respectively. Each row
of the 2D array records eight attributes of a particle includ-
ing coordinates, velocities, weight, and label. The last two
attributes, process rank and particle local ID within the pro-
cess, together form the particle label which globally identifies
a particle. They are determined on each particle in the first
simulation iteration and remain unchanged throughout the
particle’s lifetime. These two arrays are distributed among
all cores and particles move across cores in a random manner
as the simulation evolves resulting in an out of order parti-
cle array. In a production run at the scale of 16,384 cores,
each core can output two million particles roughly every 120
second resulting in 260GB of particle data per output. GTC
employs the ADIOS BP format [23], a log-structured, write-
optimized file format for storing particle data.

Figure 2: Illustration of PreDatA Operations on
GTC Particle Data

As illustrated in Fig. 2, three analysis and preparation
tasks are performed on particle data. The first involves
tracking across multiple iterations a million-particle subset
out of the billions of particles, requiring searching among
the hundreds of 260GB files by the particle index label. To
expedite this operation, particles can be sorted by the label
before searching. The second task performs a range query
to discover the particles whose coordinates fall into certain
ranges. A bitmap indexing technique [31] is used to avoid
scanning the whole particle array and multiple array chunks
are merged to speed up bulk loading. The third task is to
generate 1D histograms and 2D histograms on attributes
of particles [17] to enable online monitoring of the running
GTC simulation. 2D histograms can also be used for visu-
alizing parallel coordinates [17] in subsequent analysis. Our
example focuses on integrating the 1D and 2D histograms
with GTC.

This architecture was previously demonstrated in Pre-
DatA [37] using node-to-node or even file on disk techniques
to connect the workflow components. These previous exper-
iments showed the importance of placing analytics carefully
for the best overall system performance. For this work, we
have repurposed this example to use the XEMEM connec-

tion using the new ADIOS transport method. This elimi-
nates the need to move data off node while eliminating the
need for source code changes to change from node-to-node
to file on disk to the shared memory interface. To facilitate
operating in the limited Kitten operating environment, the
GTC-P proxy application for GTC is used. GTC-P is used
for porting tests, performance testing, and optimization in-
vestigations.

4.3 Neutronics Energy Spectrum Analysis
SNAP [2] is a proxy application, developed to simulate the

performance workload of the discrete ordinates neutral par-
ticle transport application PARTISN [6]. PARTISN solves
the linear Boltzmann equation for neutral particle trans-
port within a material. The solution of the time-dependent
transport equation is a function of seven independent vari-
ables describing the position, direction of travel, and energy
of each particle, and time. PARTISN uses a domain de-
composition strategy to parallelize the problem, distribut-
ing both the data and computations required to solve the
Boltzmann equation. The inner loop of the application in-
volves a parallel wavefront sweep through the spatial and
directional dimensions, in the same fashion as the Sweep3D
benchmark [3]. SNAP does not perform the actual physics
calculations of PARTISN, rather it is designed to perform
the same number of operations, use the same data layout,
access the data in (approximately) the same pattern.

SNAP is coupled to an analytics code which evaluates the
energy spectrum of the simulation at each time step. This
application, coupled using TCASM, was originally described
elsewhere [27]. At the end of each time step, the SNAP
simulation publishes its data via TCASM’s copy-on-write
approach. The spectrum analysis code accesses each time
step’s data in turn and computes the spectrum, printing the
results to standard output.

In the Hobbes environment, the application and analytics
codes are unchanged. As preciously mentioned, TCASM
itself has been modified to use XEMEM to share memory
between enclaves, as opposed to using Linux VMA in the
original implementation.

5. EVALUATION
In order to demonstrate the effectiveness of our Hobbes

OS/R architecture to support composed applications we
have evaluated both the LAMMPS and GTC compositions
on a single node. The experiments were conducted on one
of the compute nodes of the “Curie” Cray XK7 system at
Sandia National Labs. Curie consists of 52 compute nodes,
each with a 16-core 2.1 GHz 64-bit AMD Opteron 6200 CPU
(Interlagos) and 32 GB in 4 channels of DDR3 RAM. The
compute nodes run Cray’s customized Linux OS, referred to
here as Compute Node Linux (CNL), which is based on a
modified SUSE version 11 (SLES 11) kernel coupled with a
BusyBox user space.

For each of our experiments we compared our Hobbes
based multi-enclave environment against the standard CNL
environment provided by Cray. Hobbes augments Cray’s
standard HPC-optimized Linux OS image with the Hobbes
infrastructure, which consisted of two new kernel modules
(XEMEM and Pisces) that needed to be loaded in the Cray
OS and a number of Hobbes user-level tools for launching
and managing new enclaves.

Our experiments consisted of multiple runs of each com-

posed application in which the application components were
mapped to different enclave topologies. Application bina-
ries used for each configuration were identical, with the only
change needed being an ADIOS configuration file update to
select the underlying transport. For each environment we
recorded the average runtime of the application along with
the standard deviation in order to evaluate performance con-
sistency. We present these results for both the LAMMPS
and GTC applications.

5.1 LAMMPS
We ran two components of our LAMMPS composition

example, the LAMMPS executable and the separate Bonds
executable, in several multi-enclave configurations and com-
pared against the baseline of running both components in
a single OS instance. The tested configurations along with
performance results are shown in Table 1. The statistics
reported were calculated from 10 runs. The baseline config-
uration was to run the LAMMPS and Bonds components
as separate processes in the default Cray OS image. In
the past these components have been coupled through the
filesystem, using the ADIOS POSIX transport (‘Cray-Linux
(POSIX)’ in the table). This is problematic because of the
filesystem overhead and the difficulty of detecting when the
LAMMPS output is ready for Bonds to start processing
it. As can be seen, this configuration has approximately
7% higher overhead than the other configurations, which
used shared-memory instead of the filesystem. Switching
to the ADIOS XEMEM transport (developed by Hobbes)
improved the baseline Cray OS performance significantly.

For the multi-enclave examples, the LAMMPS and Bonds
components were split to run in two separate OS images
(enclaves). One component was run in the Cray OS while
the other component was run in either a Kitten enclave or
in a Palacios enclave hosting a Linux virtual machine (VM).
Additionally we evaluated running the components in two
separate Kitten enclaves. These enclaves were started by us-
ing the Hobbes tools to offline CPU and memory resources
from the Cray OS and then ‘booting’ either a Kitten or
Palacios enclave on the offlined resources (i.e., the enclaves
space shared the node’s resources). The components were
then cross-enclave coupled using the Hobbes XEMEM mem-
ory sharing mechanism – LAMMPS exported a region of its
memory with a well known name, which Bonds then at-
tached to via the well known name.

As can be seen in Table 1, all of the multi-enclave con-
figurations that we evaluated produced roughly the same
performance as the single OS (single enclave) baseline with
shared-memory coupling. This is what we had hoped to
show – that we could run this composition across multi-
ple OS images without significantly impacting performance.
This enables the use of system software customized to the
needs of the code. We plan to evaluate this aspect in future
work looking at multi-node scalability.

5.2 Gyrokinetic Toroidal Code (GTC)
The second set of experiments we ran focused on the

GTC application. Similar to the LAMMPS experiments,
we executed each application component on a collection of
OS/R configurations to measure any difference in perfor-
mance. Due to the OS/R feature requirements of GTC’s
analytics package we were unable to run the simulation di-
rectly on Kitten, and instead had to deploy it inside a Linux

Table 1: LAMMPS multi-enclave runtimes (secs)

LAMMPS Enclave Bonds Enclave Average StdDev

Cray-Linux (POSIX) 165.02 0.20
Cray-Linux (XEMEM) 153.48 0.08

Cray-Linux Kitten 153.50 0.15
Kitten Cray-Linux 153.91 0.04
Cray-Linux Linux-VM 153.35 0.17
Linux-VM Cray-Linux 156.10 0.15
Kitten-Enclave1 Kitten-Enclave2 153.83 0.03

Table 2: GTC multi-enclave runtimes (secs)
GTC Enclave Analysis Enclave Average StdDev

Cray-Linux (POSIX) 148.42 0.12
Cray-Linux (XEMEM) 147.40 0.09

Cray-Linux Linux-VM 147.52 0.09

VM hosted on a Palacios/Kitten instance. In these tests,
GTC runs for 100 timesteps performing output every five
timesteps. It generates approximately 7.2 MB of data per
process and the analysis routine generates histograms writ-
ten to storage. For our examples, we run with a single pro-
cess for both the simulation and the analysis routines as a
proof of concept. The times presented when using POSIX
represent solely the time for writing data to a RAM-disk file
system while the XEMEM times include the time for gener-
ating all but the last set of histograms written to the RAM-
disk file system. We chose not to include the histogram
generation time as it is less than two seconds and the typ-
ical workflow coordination overheads and delays would un-
fairly penalize the POSIX files approach. For these tests,
we perform five runs for each configuration and show the
mean and standard deviation for each. The results of these
experiments are shown in Table 2.

The experiments show that using the Hobbes XEMEM
shared memory transport provides slightly improved and
slightly more consistent performance over the native POSIX
file based interface available on CNL. Furthermore, the XE-
MEM performance remains consistent even when the ana-
lytics workload is moved to a virtual machine based envi-
ronment.

6. RELATED WORK
A wide range of virtualization systems and inter-VM com-

munication techniques have been used to support multiple
applications or enclaves with customized runtime environ-
ments. For example, cloud systems based on virtualization
support multiple independent virtual machines running on
the same hardware. Communication between VMs in these
systems is generally supported through virtual networking
techniques [33, 10] or shared memory [34]. Furthermore,
systems based on OS-level virtualization and resource con-
tainers (e.g., Docker [1]) can leverage OS inter process com-
munication tools to support communication between con-
tainers.

The primary goal of each of these systems is to maximize
throughput, while providing security and hardware perfor-
mance isolation to the independent VMs or resource contain-
ers. However, Hobbes differs from these systems through its

focus on providing performance isolation through each layer
of the system stack, including the node’s system software
and resource management frameworks which are indepen-
dent to each enclave. The result is that Hobbes can guar-
antee a higher degree of performance isolation, while at the
same time can selectively relax the isolation to support en-
claves which cooperate, as needed by composed applications.

In addition to its use in cloud systems, virtualization has
also been proposed for use in HPC systems to varying de-
grees; this includes the use of a virtual cluster to allow cus-
tomization of the application development environment [21]
as well as to improve application performance [19]. The work
described in this paper builds on these techniques, with the
additional focus of supporting multiple communicating, co-
ordinating customized enclaves.

Much work in the HPC space has focused on facilitating
application composition and coupling between simulations
and analytics codes. Initial work has focused on providing
streaming style data transfers between concurrently running
simulation and analytics codes, both in-transit [13, 11, 15]
and in situ [39, 8, 13]. More recent work has focused on pro-
viding management capabilities for these mechanisms to ad-
dress interference when applications share physical resources
[38, 4, 16], as well as resource allocation issues that span en-
tire science workflows [12, 16]. The work focused on in this
paper can leverage and adapt these techniques to facilitate
coordination of applications composed of multiple commu-
nicating enclaves in a virtualized environment.

7. DISCUSSION AND FUTURE WORK
This paper presents an existence proof of the capabili-

ties of the Hobbes OS/R to provide application composition
support across a multi-enclave exascale environment. While
the performance results show a relatively small performance
benefit for our current prototype system, it is important to
note that it enables a wide range of possibilities that would
not otherwise be possible. For example, the Linux VM that
we tested with used a more modern kernel.org 3.12.29 Linux
kernel and more full-featured user-level environment than
the Cray CNL environment, which uses an older 2.6.32 Linux
kernel and a bare-bones user-level environment (e.g., there
is no bash, no top, no strace). Many application compo-
nents, such as Bonds or the GTC analytics package, benefit
from having a more modern Linux kernel and/or require
functionality that is missing in the vendor’s base OS im-
age. In addition, highly scalable simulation workloads often
benefit from the streamlined lightweight kernel environment
provided by Kitten.

While in this work our focus has mainly been on lower
level system support for composition, there remains a sig-
nificant amount of work left to do in regards to providing a
full featured application runtime environment. Future work
will likely focus on developing APIs to support the com-
plex interactions required by composed applications, as well
as supporting additional cross enclave communication con-
structs.

A significant challenge for deploying composed applica-
tions in a multi-enclave OS/R is the configuration and man-
agement of each component individually and collectively. In
order to provide deployment and composition flexibility to
application developers and users, we will need to develop a
set of management interfaces and configuration languages.
In particular we are investigating languages to describe the

composition of components into an application, as well as
languages to describe the deployment of the application
components on the target system. Ideally these languages
will allow applications to be written once and deployed in
any underlying system configuration, regardless of the indi-
vidual enclave OS/R and communication mechanisms.

In addition to addressing the challenges of configuring and
managing application and OS/R components on a single
node, we must also address the complexity of managing and
coordinating these enclaves across the entire exascale sys-
tem. In order to enable global machine management and
coordination we plan to develop interfaces to allow the inte-
gration of the Hobbes OS/R into a global information bus
that is being proposed for exascale architectures.

Finally, while thus far we have focused on space shared
system configurations where each application component has
fully dedicated resource allocations, in the future we plan to
address time shared configurations where multiple compo-
nents may cooperatively share resources in order to improve
resource utilization. Such support will likely require the abil-
ity to send scheduling notifications between processes in sep-
arate enclaves that could be configured to share processors,
namely native processes and processes executing in Palacios
VMs. Such support would enable cooperative execution in
a manner similar to that proposed in GoldRush [38].

8. CONCLUSION
In this paper we have presented an implementation and

evaluation of an early exascale OS/R prototype designed to
enable application composition across multiple independent
enclaves. Our prototype consists of the Hobbes OS/R envi-
ronment which provides a set of unified application APIs to
allow composed applications to be arbitrarily composed and
deployed across multiple OS/Rs at runtime. We have pro-
vided an initial evaluation of our system, and shown that we
can provide slightly better performance compared to current
single system image environments.

9. ACKNOWLEDGMENTS
This work has been supported by US Department of En-

ergy, Office of Science, Advanced Scientific Computing Re-
search program.

This work was performed in part at Los Alamos National
Laboratory, supported by the U.S. Department of Energy
contract DE-FC02-06ER25750. This work was performed
in part at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC under contract DE-AC05-
00OR22725. Sandia is a multiprogram laboratory oper-
ated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

10. REFERENCES
[1] Docker. http://www.docker.com. Accessed:

2015-05-15.

[2] Sn application proxy.
https://github.com/losalamos/SNAP. Accessed:
2015-03-20.

[3] Sweep3d benchmark.
http://wwwc3.lanl.gov/pal/software/sweep3d/.
Accessed: 2015-03-20.

[4] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,
K. Schwan, and F. Zheng. DataStager: scalable data
staging services for petascale applications. Cluster
Computing, 13:277–290, 2010.
10.1007/s10586-010-0135-6.

[5] H. Akkan, L. Ionkov, and M. Lang. Transparently
consistent asynchronous shared memory. In
Proceedings of the 3rd International Workshop on
Runtime and Operating Systems for Supercomputers,
page 6. ACM, 2013.

[6] R. E. Alcouffe, R. S. Baker, J. A. Dahl, S. A. Turner,
and R. Ward. Partisn: A time-dependent, parallel
neutral particle transport code system. Los Alamos
National Laboratory, LA-UR-05-3925 (May 2005),
2005.

[7] N. R. Barton, J. V. Bernier, J. Knap, A. J. Sunwoo,
E. K. Cerreta, and T. J. Turner. A call to arms for
task parallelism in multi-scale materials modeling.
International Journal for Numerical Methods in
Engineering, 86(6):744–764, 2011.

[8] D. Boyuka, S. Lakshminarasimhan, X. Zou, Z. Gong,
J. Jenkins, E. R. Schendel, N. Podhorszki, Q. Liu,
S. Klasky, and N. F. Samatova. Transparent in situ
data transformations in ADIOS. In CCGrid ’14. IEEE.

[9] R. Brightwell, R. Oldfield, A. B. Maccabe, D. E.
Bernholdt, E. Brewer, P. Bridges, P. Dinda,
J. Dongarra, C. Iancu, M. Lang, J. Lange,
D. Lowenthal, F. Mueller, K. Schwan, T. Sterling, and
P. Teller. Hobbes: Composition and virtualization as
the foundations of an extreme-scale OS/R. In
Proceedings of the 3rd International Workshop on
Runtime and Operating Systems for Supercomputers,
ROSS ’13, pages 2:1–2:8, New York, NY, USA, 2013.
ACM.

[10] Z. Cui, L. Xia, P. G. Bridges, P. A. Dinda, and J. R.
Lange. Optimizing overlay-based virtual networking
through optimistic interrupts and cut-through
forwarding. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages
99:1–99:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[11] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan,
M. Wolf, X. Zhang, H. Abbasi, S. Klasky, and
N. Podhorszki. Flexpath: Type-based
publish/subscribe system for large-scale science
analytics. In 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing,
Chicago, IL, USA, May 26-29, 2014, pages 246–255.
IEEE, 2014.

[12] J. Dayal, J. Cao, G. Eisenhauer, K. Schwan, M. Wolf,
F. Zheng, H. Abbasi, S. Klasky, N. Podhorszki, and
J. F. Lofstead. I/O containers: Managing the data
analytics and visualization pipelines of high end codes.
In HPDIC ’13, pages 2015–2024.

[13] C. Docan, M. Parashar, and S. Klasky. DataSpaces:
an interaction and coordination framework for coupled
simulation workflows. In HPDC 2010. ACM.

[14] M. Giampapa, T. Gooding, T. Inglett, and
R. Wisniewski. Experiences with a Lightweight
Supercomputer Kernel: Lessons Learned from Blue
Gene’s CNK. In Proceedings of the 23rd International

Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2010.

[15] M. Hereld, M. E. Papka, and V. Vishwanath. Toward
Simulation-Time Data Analysis and I/O Acceleration
on Leadership-Class Systems. In IEEE Symposium on
Large-Scale Data Analysis and Visualization, 2011.

[16] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu,
S. Klasky, N. Podhorszki, and H. Abbasi. Using
cross-layer adaptations for dynamic data management
in large scale coupled scientific workflows. In SC ’13.

[17] C. Jones, K.-L. Ma, A. Sanderson, and L. R. M. Jr.
Visual interrogation of gyrokinetic particle
simulations. J. Phys.: Conf. Ser., 78(012033):6, 2007.

[18] S. M. Kelly, J. P. V. Dyke, and C. T. Vaughan.
Catamount N-Way (CNW): An implementation of the
Catamount light weight kernel supporting N-cores
version 2.0. Technical Report SAND2008-4039P,
Sandia National Laboratories, June 2008.

[19] B. Kocoloski and J. Lange. Better than native: using
virtualization to improve compute node performance.
In Proceedings of the 2nd International Workshop on
Runtime and Operating Systems for Supercomputers,
ROSS ’12, pages 8:1–8:8, New York, NY, USA, 2012.
ACM.

[20] B. Kocoloski and J. Lange. Efficient Shared Memory
for Composed Applications on Multi-OS/R Exascale
Systems. In Proceedings of the 24th International
ACM Symposium on High Performance Distributed
Computing (HPDC), 2015. To Appear.

[21] J. Lange, K. Pedretti, P. Dinda, P. Bridges, C. Bae,
P. Soltero, and A. Merritt. Minimal-Overhead
Virtualization of a Large Scale Supercomputer. In
Proceedings of the 7th ACM International Conference
on Virtual Execution Environments (VEE), 2011.

[22] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui,
L. Xia, P. Bridges, A. Gocke, S. Jaconette,
M. Levenhagen, and R. Brightwell. Palacios and
Kitten: New High Performance Operating Systems for
Scalable Virtualized and Native Supercomputing. In
Proceedings of the 24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2010.

[23] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Input/output apis and data organization for high
performance scientific computing. In In Proceedings of
PDSW 2008 at Supercomputing 2008, 2008.

[24] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Adaptable, metadata rich io methods for portable
high performance io. In In IPDPS’09, May 25-29,
Rome, Italy, 2009.

[25] National Center for Atmospheric Research. CESM:
Community earth system model.
http://www2.cesm.ucar.edu/, 2015.

[26] L. Oliker, J. Carter, michael Wehner, A. Canning,
S. Ethier, A. Mirin, G. Bala, D. parks, patrick Worley
Shigemune Kitawaki, and Y. Tsuda. Leading
computational methods on scalar and vector hec
platforms. In Proceedings of SuperComputing 2005,
2005.

[27] D. Otstott, N. Evans, L. Ionkov, M. Zhao, and
M. Lang. Enabling composite applications through an
asynchronous shared memory interface. In Big Data
(Big Data), 2014 IEEE International Conference on,

pages 219–224. IEEE, 2014.

[28] J. Ouyang, B. Kocoloski, J. Lange, and K. Pedretti.
Achieving Performance Isolation with Lightweight
Co-Kernels. In Proceedings of the 24th International
ACM Symposium on High Performance Distributed
Computing (HPDC), 2015. To Appear.

[29] S. Plimpton. Fast parallel algorithms for short-range
molecular dynamics. Journal of Computational
Physics, 117(1):1–19, 1995.
http://lammps.sandia.gov/index.html.

[30] R. Schmidt, K. Belcourt, R. Hooper, R. Pawlowski,
K. Clarno, S. Simunovic, S. Slattery, J. Turner, and
S. Palmtag. An approach for coupled-code
multiphysics core simulations from a common input.
Annals of Nuclear Energy, 2014. http:
//dx.doi.org/10.1016/j.anucene.2014.11.015.

[31] R. R. Sinha and M. Winslett. Multi-resolution bitmap
indexes for scientific data. ACM Trans. Database
Syst., 32(3):16, 2007.

[32] A. Strachan, S. Mahadevan, V. Hombal, and L. Sun.
Functional derivatives for uncertainty quantification
and error estimation and reduction via optimal
high-fidelity simulations. Modelling Simul. Mater. Sci.
Eng., 21(6):065009, Sept. 2013.

[33] M. O. Tsugawa and J. A. B. Fortes. A virtual network
(vine) architecture for grid computing. In 20th
International Parallel and Distributed Processing
Symposium (IPDPS), April 2006.

[34] J. Wang, K.-L. Wright, and K. Gopalan. Xenloop: A
transparent high performance Inter-VM network loop
back. Journal of Cluster Computing – Special Issue on
High Perform ance Distributed Computing (HPDC),
12(2):141–152, 2009.

[35] M. Wolf, Z. Cai, W. Huang, and K. Schwan.
Smartpointers: Personalized scientific data portals in
your hand. In Proceedings of SuperComputing 2002,
Nov 2002. http://www.sc-
2002.org/paperspdfs/pap.pap304.pdf.

[36] M. Woodacre, D. Robb, D. Roe, and K. Feind. The
SGI Altix 3000 Global Shared Memory Architecture.
Technical report, Silicon Graphics International
Corporation, 2003.

[37] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu,
S. Klasky, M. Parashar, N. Podhorszki, K. Schwan,
and M. Wolf. Predata - preparatory data analytics on
peta-scale machines. In Proceedings of the 24th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS 2010), April 2010.

[38] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer,
K. Schwan, H. Abbasi, and S. Klasky. GoldRush:
Resource Efficient in Situ Scientific Data Analytics
Using Fine-grained Interference Aware Execution. In
Proceedings of the 26th International Conference on
High Performance Computing, Networking, Storage
and Analysis (SC), 2013.

[39] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf,
J. Dayal, T.-A. Nguyen, J. Cao, H. Abbasi, S. Klasky,
N. Podhorszki, and H. Yu. Flexio: I/o middleware for
location-flexible scientific data analytics. In Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pages 320–331, May
2013.

