
Transparent Network Services via a
Virtual Traffic Layer for Virtual Machines

John R. Lange Peter A. Dinda
Department of Electrical Engineering and Computer Science, Northwestern University

Evanston, IL, USA
jarusl@cs.northwestern.edu, pdinda@northwestern.edu

ABSTRACT
We claim that network services can be transparently added
to existing unmodified applications running inside virtual
machine environments. Examples of these network services
include protocol transformations (e.g. TCP to UDT), net-
work connection persistence during long duration unavail-
ability (e.g. wide area VM migration), and network flow
modification (e.g. local acknowledgments and Split-TCP).
To demonstrate the utility of this concept, and to enable the
practical implementations of these examples and others, we
have developed VTL. VTL is a framework for packet modi-
fication and creation whose purpose is to modify network
traffic to and from a VM, doing so transparently to the
VM and its applications. We explain how to use VTL to
implement the examples mentioned above and others, such
as providing anonymized connectivity for a virtual machine
through the Tor anonymizing network, and creating coop-
erative selective wormholing services for network intrusion
detection systems.

Categories and Subject Descriptors: C.2 (Computer-
Communication Networks), D.4 (Operating Systems), C.4
(Performance of Systems)

General Terms: Design, Performance, Security

Keywords: Network Services, Virtual Machines, Overlays

1. INTRODUCTION
There has been a fast growing interest in virtualization

technologies and their practical uses [8], including in the
high performance distributed computing community [7, 18,
33, 17, 9, 38]. Increasingly fast virtual machine monitors [3,
41, 40] and lower overhead device virtualization [24, 27] are
making virtual execution environments ever more applica-
ble to high-end computing [15]. Researchers have also been
offering prognostic glimpses of new capabilities and uses of-

This work is in part supported by the NSF (awards ANI-0093221,
ANI-0301108, and EIA-0224449), the DOE via ORNL, and by gifts
from VMware, Dell, and Symantec.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’07, June 25–29, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-673-8/07/0006 ...$5.00.

fered by virtualization environments [11, 10]. Perhaps the
most obvious example of this is migration of virtual envi-
ronments [35, 31, 5, 30, 20], which has finally made process
migration [29] widely available.

An important attraction of virtual execution environments
is that they permit the transparent addition of new services
to applications without requiring application changes. For
example, our group has demonstrated the transparent ad-
dition of virtual networks [37], application topology infer-
ence [13], network monitoring [14], scheduling [26], adaptive
migration [38], and optical network reservations [22] to ex-
isting, unmodified applications. These services, and all of
the others we are aware of, are concerned with observing
and controlling the execution of VMs, or of observing and
routing their network traffic.

We propose the notion of transparent network services for
virtual execution environments. A transparent network ser-
vice can not only monitor traffic, and control its routing, but
it can also manipulate the data and signaling of a flow or
connection. It can statefully manipulate the packet stream
entering or exiting a VM at the data link, network, trans-
port, and (to a limited extent) application layers. However,
despite this dramatic freedom, a transparent network service
must work with existing, unmodified applications. Further-
more, it must not require any changes to the guest OS, its
configuration, or other aspects of the VM.

Our motivation in introducing the transparent network
service notion comes from two sources. First, in the broader
networking community there exists a wide range of net-
working techniques that could be more broadly used if they
could be seamlessly integrated with unmodified applications.
If the application runs in a VM, transparent network ser-
vices can provide this bridge. Second, there are network-
ing challenges that uniquely emerge in the context of VM-
based computing, particularly in distributed computing us-
ing VMs. Transparent network services can be created that
solve these problems. In both cases, new transparent net-
work services could enhance functionality or performance.

We claim that to facilitate the creation of transparent
network services in a non-ad hoc way, a common framework
is needed. In this paper we introduce the Virtual Traffic
Layer (VTL) toolset, which is designed to enable the rapid
development of transparent networking services. Using VTL
we explore the possibilities offered by virtual networking,
implementing a range of transparent network services.

VTL can be used to build standalone services or services
that are integrated into VNET, our virtual overlay net-
work [37, 38]. Both the standalone and VNET implemen-

tations enable a wide range of possibilities for creating new
network services and evaluating experimental techniques for
harnessing the capabilities of virtual networks. VTL con-
sists of four components, each exporting an API:

• Packet acquisition and serialization

• Packet inspection and modification

• Maintenance of connection state

• Utility functions for common compositions of the pre-
vious three

These APIs are used to construct modules that implement
services. The modules are then integrated into a run-time
core. VTL runs on both Unix (Linux) and Windows. It
has been evaluated with both the Xen [3] and VMWare [39]
virtual machine monitors, and should work with other vir-
tual machine monitors. It is currently implemented as a
userspace tool.

Using VTL we have designed the following transparent
network services:

• Tor-VTL: This service bridges the applications run-
ning in a VM to the Tor overlay network, resulting in
networking being anonymous.

• Subnet Tunneling: This service alters the default rout-
ing behavior between two VMs that are on the same
physical network, requiring network and data link layer
packet manipulation, resulting in enhanced performance.

• Local Acknowledgments: This service generates TCP
acknowledgments locally to improve TCP performance
on high reliability networks.

• Split-TCP: This service improves TCP performance by
splitting a connection into multiple connections.

• Protocol Transformation: This service transforms TCP
connections into high-performance protocol connections,
such as UDT [12] connections.

• Stateful Firewall: This service is a firewall that is un-
modifiable by code in the VM because it exists outside
of the VM.

• TCP Keep-Alives: This service maintains TCP con-
nections in a stable, open state despite a long duration
network disconnection.

• Vortex: This service provides the wormholing of traffic
on the unused ports of volunteer machines back to an
intrusion detection system.

These transparent network services and others can aug-
ment current services provided to virtual machines. For ex-
ample, virtual machine migration can now be augmented
with network migration, such that the virtual machine is un-
aware that a network change occurred and retains its open
connections. Local acknowledgments can be combined with
an optical network reservation to help an application trans-
fer data faster.

Our purpose in describing the above services is to illus-
trate the flexibility of the VTL toolkit, and the value of the
concept of transparent network services.

Experimental Environment. Experiments and measurements
reported in this paper were done using an IBM e1350 cluster
consisting of dual 2.0 GHz Xeon IBM x335 computers with
1.5 GB of RAM and gigabit NICs connected to an HP 2810-
48G gigabit switch. These machines ran Red Hat Enterprise
Linux ES 4 update 1 with Xen 3.0 and VMware Server 1.0.1,
with the same OS in the VM guests.

2. VTL TOOLSET
VTL is intended to provide developers a simplified frame-

work for enabling the creation of new transparent network
services, or the transparent integration of existing network
services such that they can be used with a wide range of ex-
isting, unmodified applications running in virtual machines.

The core design of VTL consists of a library of packet func-
tions and a suite of modules implementing various mecha-
nisms made possible with the framework. The goal of VTL
is to provide an extensible infrastructure to allow for the
rapid implementation of new services. This infrastructure
includes methods of inspecting packet headers and content,
cloning packets, creating new packets, and maintaining per-
connection state. Put together these methods provide the
components to do packet introspection and manipulation,
and to create virtual connection endpoints.

VTL is designed to provide packet access and modifica-
tion capabilities from the transport layer down to the data
link layer. As such VTL does not provide direct function-
ality to handle application-specific protocols or packet for-
mats. However VTL is extensible and can be augmented
with application-specific functionality. For example, we will
later discuss a DNS extension.

VTL can be used alone, or as an extension to VNET.
In the latter case, VNET is in a position to optimize, on
the fly, live network traffic. We are currently studying how
to integrate the VTL mechanisms into our adaptation and
inference mechanisms to provide automatic instantiation of
traffic optimization.

2.1 Requirements
VTL requires that the virtual machines be configured with

“host-only” network interfaces to ensure that VTL is the
sole recipient of all network traffic. In this way VTL can
inspect and modify all traffic seen by the virtual machine
without any modifications to the guest OS or applications.
VTL must be able to efficiently attach to the virtual network
interfaces provided by the VMM, to be able to send and
receive packets.

VTL is built on top of the libpcap [28] libraries and lib-
net [25] (if VTL is running under a Unix variant). Libpcap
provides packet capture functionality and is available for all
standard Unix environments and as Winpcap [42] for Win-
dows systems. VTL utilizes libnet for packet injection in
Unix environments, and uses the winpcap injection mecha-
nisms under Windows. Currently VTL is able to interface
with any virtual machine monitor that provides a virtual
networking interface accessible to pcap and libnet. VTL
can also connect to other applications as long as the net-
work traffic can be routed through TUN/TAP devices. This
includes both Xen and Linux.

2.2 VTL and VNET
We now expand our description of VTL’s relationship with

VNET.

Standalone VTL. VTL is capable of standalone operation,
and includes all the necessary mechanisms for integrating
itself with a virtual environment. The main functionality
of VTL is included as a library that is used by standalone
utilities to connect to virtual networks and manipulate the
packet streams to/from VMs.

VNET. VNET is a layer 2 overlay network for virtual ma-
chines. VNET manages the illusion that a distributed collec-
tion of virtual machines each maintain a network presence
on a given local area network, while simultaneously striv-
ing to provide high performance connectivity among them.
Each physical machine hosting a VM runs a VNET process
that intercepts VM traffic and tunnels it to the appropriate
destination. The destination is either another VM that can
be contacted directly through VNET or an address external
to the overlay. Traffic destined for an external address is
routed through the overlay to a VNET proxy node, which
is responsible for injecting the packets onto the appropriate
network. The overlay thus consists of a set of TCP connec-
tions or UDP peers (VNET links) and a set of rules (VNET
routes) to control routing on the overlay.

VTL with VNET. While VTL is designed to operate inde-
pendently, it can also be used as an extension to VNET.
In the VNET environment, VTL is capable of either moni-
toring/transforming traffic as it passes through VNET, con-
trolling its own set of the overlay links that VNET routes
onto, or handing routing decisions for a subset of VNET traf-
fic. This enables far greater flexibility in managing VNET
traffic, and provides VNET an extensible framework for in-
corporating new functionality.

VTL runs as as a companion process connected to VNET
with a fast full duplex channel. This allows packets to be
handed over to VTL with the same mechanism used for
transmitting packets between VNET nodes. In this way
VTL is exposed as an alternative type of VNET link that
can be instantiated and routed to using the same control
methods as ordinary VNET links. The VTL modules are
reconfigured to read and write packets via the channel in-
stead of a network interface. This allows all VTL modules
(services) implemented as standalone tools to be seamlessly
integrated into the VNET overlay.

2.3 Network Interface API
VTL provides a common API to capture and inject pack-

ets to and from a network device, virtual or real. While
this API is currently built on top of libpcap and libnet, it
exists to simplify packet capture and injection and to pro-
vide an interface to other packet capture mechanisms. The
API includes functions to connect and disconnect from a de-
vice, and functions to read and write packets to the device.
There is also a notification access function that returns a
environment-specific handle that will indicate when a packet
is available to be captured.

As an example, VTL allows us to easily bridge a virtual
host-only network to a physical network device. We illus-
trate this in Figure 1, which implements a VTL module that
simply writes packets received on one device out to another.

VTL Overhead. The current VTL implementation is com-
pletely in user space, which places limits on the possible per-
formance available to a VTL module. In Figure 2 we show

RawEthernetPacket pkt;

iface_t * src_if = if_connect("src_device");
iface_t * dst_if = if_connect("dst_device");

while (if_read(src_if, &pkt)) {
if_write(dst_if, &pkt);

}

Figure 1: Simple one-way VTL bridge.

 0

 20

 40

 60

 80

 100

 120

Two VTL ProcessesOne VTL ProcessXen Bridge

B
an

dw
id

th
 (

M
B

/s
)

Overhead Measurements

102 MB/s

18.7 MB/s 21.5 MB/s

Figure 2: Performance overhead of VTL.

the maximum bandwidth possible using ttcp when bridg-
ing a virtual network interface to a physical interface. We
present results for three different types of bridges: the stan-
dard Xen bridge configuration (all in kernel) and two dif-
ferent VTL modules (both in user space). The first VTL
module runs as a single process for half duplex operation,
while the second consists of two processes, together forming
a full duplex connection.

While the results show a significant degree of performance
degradation, it is important to make several points. First,
VTL is intended as a proof of concept tool. We have not
yet explored how to optimize VTL, but there is no good
reason to believe that performance would be degraded if it
were integrated into the Dom0 kernel of Xen, or equivalent
in VMware. Second, the available performance is still quite
reasonable for WAN environments.

2.4 Packet Access API
Most of VTL’s functionality is encapsulated in an API

allowing inspection and modification of packets. VTL pro-
vides primitives that allow direct access to standard packet
fields which can be used directly, or accessed through various
functions that have been built on top of them. Examples for
accessing the destination address in the IP header are illus-
trated in Figure 3.

Besides offering a unified packet access API, VTL builds
on these primitives to provide more advanced functionality.
Such functions include packet queries, field swapping func-
tions, header calculations, and derivative packet creation
(e.g., ACK generation).

2.5 State Models
The VTL framework also provides methods for maintain-

ing connection protocol state, in the form of state models.
VTL modules can manipulate state corresponding to either
end point of a connection, since the state models contain
state variables for both end points. This allows a VTL mod-

RawEthernetPacket pkt;
unsigned long dst, new_dst;

dst = *(uint32 *)IP_DST(pkt.data);
*(uint32 *)IP_DST(pkt.data) = new_dst;

dst = GET_IP_DST(&pkt);
SET_IP_DST(&pkt, new_dst);

Figure 3: Example of basic packet access.

int create_data_pkt(vtl_model_t * model,
char * data,
int data_len) {

RawEthernetPacket data_pkt;

create_empty_pkt(&model,
&data_pkt,
OUTBOUND_PKT);

memcpy(TCP_DATA(data_pkt.data),
data, data_len);

ip_len = GET_IP_TOTAL_LEN(data_pkt.data);
ip_len += data_len;
SET_IP_TOTAL_LEN(data_pkt.data, ip_len);

compute_ip_checksum(&data_pkt);
compute_tcp_checksum(&data_pkt);

sync_model(&model, &data_pkt);

pkt_len = data_pkt.get_size() + data_len;
data_pkt.set_size(pkt_len);

queue_pkt(&data_pkt);
return 0;

}

Figure 4: Creating a data packet.

ule, for example, to create packets that appear to originate
from either the local or remote network end point. Included
with the framework are basic models for standard protocols
that can be stacked to provide support for additional higher
level protocols. For instance, a TCP state model consists
of the various state parameters needed for a TCP connec-
tion (ACK/SEQ numbers, timestamps, etc) as well as an IP
state model that contains the necessary information needed
by the IP protocol (IP ID). This allows VTL to be extended
to track state at multiple layers of the networking stack with
the same interface.

The state inside a state model is maintained by the VTL
state API. This API allows initialization of state models,
synchronization with connection traffic, and connection in-
teraction. State models can either be initialized manually
in the case where the developer wishes to create a connec-
tion inside VTL, or by supplying an example packet from
the connection. Once initialization is complete the model
can be modified directly by the user, or by updating the
model with a connection packet. The model can also rec-
ognize packets that belong to the tracked connection, as
well as transform packets so that they belong to the tracked
connection. Furthermore, VTL can create new packets be-

longing to the connection from the VTL models. Later we
discuss how we used this feature to tunnel TCP connections
through a SOCKS proxy server. A simple example of packet
creation is shown in Figure 4.

3. EXAMPLE SERVICES
We now describe how a range of transparent network ser-

vices are implemented using VTL.

3.1 Anonymous Networking
For Any Application

The Tor network is a cooperative overlay that allows TCP
connections to be routed such that the source of the con-
nection remains unknown to the destination or anyone ob-
serving the traffic. The Tor network is based on the Onion
Router [6], which provides randomized and encrypted rout-
ing through an application-layer overlay.

Applications route connections through Tor by being con-
figured to send their traffic through a standard SOCKS [19]
interface. Currently Tor is only available for applications
that have implemented the SOCKS interface for proxying
connections or are running in an environment configured to
use a myriad set of tools that provide SOCKS proxy sup-
port for applications not implementing it themselves. An ex-
treme example of this is the Anonym.OS [1] live CD, which
provides a pre-configured environment that only runs appli-
cations that can be interfaced with Tor.

Using VTL, we have developed a transparent network ser-
vice that interfaces any application running in the VM with
the Tor network. No changes to the application or its VM
environment are needed. This service illustrates the utility
of VTL.1 Beyond basic Tor connectivity, the combination
of the VM and Tor-VTL results in us being able to com-
pletely prevent any information leakage since all traffic not
routable by Tor is simply dropped by the host-only network.
Furthermore, Tor-VTL will work with any OS or application
running in the VM as long as it uses TCP. A typical Tor-
VTL configuration is shown in Figure 5.

VTL Implementation. The Tor-VTL module impersonates
the destination of any and all network packets sent from the
VM. This is done by using the VTL state models to maintain
per connection state for each connection opened by the guest
environment. The data segments for each connection are
extracted and proxied through a SOCKS connection to the
Tor network. The SOCKS proxy connection is maintained
in states analogous to the states of a TCP connection. The
management of the connections’ state is done in four stages:

• Open – Establish SOCKS connection, initialize state
model, handle SYN sequence

• Established – Maintain state models, handle data trans-
fer

• Close – Close SOCKS connection, handle FIN sequence,
delete state model

• Error – SOCKS connection closed, VM signaled via
RST packet

1Tor-VTL runs under Linux and Windows and is available
for download at http://www.artifex.org/~jarusl/TorVTL

TOR NETWORK

Tor Server

VM

Hosting Service

VMM
(VMWare, Xen, etc)

Tor-VTL
Host-only
interface

VTL Interface

SOCKS
Connection

TCP Connections + DNS lookups

Figure 5: Network configuration of Tor-VTL.

The implementation of the Tor-VTL module is accomplished
in ∼1000 lines of C code. It is the most complex module
(service) that we illustrate in this paper. We now discuss
three of these stages along with the special cases for DNS
lookups and ARP requests.

Open. The open mechanism is triggered by the reception of
a SYN packet from the virtual machine. When this occurs
Tor-VTL extracts the destination IP address and port num-
ber from the packet and sends a SOCKS connection request
to the Tor proxy server. Tor-VTL then initializes a state
model for the connection and adds it to a list of current
connections, along with a reference to the socket connected
to the proxy. The connection request latency of Tor net-
work can be significant, so at this point Tor-VTL returns to
process other pending events. The connection establishment
latency is frequently longer than the timeout value for TCP
SYN packets, which results in multiple SYN packet retrans-
missions, which Tor-VTL simply drops. Once the Tor server
has established the connection it sends a reply message back
to Tor-VTL signifying success or failure. The module then
handles the reply, generates a SYN-ACK packet, updates
the state model, and queues the packet for delivery to the
VM. At this point the module is ready to transfer data.

Established. Once the connection has been established, an
open socket to the Tor proxy exists along with a state model
describing the TCP connection from the virtual machine.
At this point Tor-VTL can handle data transmissions from
either Tor or the VM. Because of the stateful nature of TCP
connections Tor-VTL must track various values included in
the TCP packets. These include the current sequence and
acknowledgment numbers as well as the window size and
optional timestamp values. This is all handled by the VTL
state models, and only requires that the module keep the
model synchronized via calls to a synchronization function.

When the VM sends data, Tor-VTL captures the packets
and searches the state models for the connection. Once the
connection is located Tor-VTL extracts the data and writes
it onto the open Tor proxy socket. Tor-VTL then updates

the state models with the values included in the intercepted
data packet. Finally the module generates an empty ACK
packet, again updates the state model, and queues the ACK
packet for delivery to the VM.

When data is received from the destination host through
the SOCKS connection, Tor-VTL must also ensure that it is
delivered to the virtual machine. An incoming data transfer
is read from the Tor proxy socket in increments the size of
the current MSS of the TCP connection, available via the
state model. These segments are then used to generate TCP
data packets that are transmitted to the VM. As the packets
are sent the module continuously updates the state model
to maintain connection consistency.

Close. Similar to data transfers, a connection close request
can come from either the VM or the SOCKS proxy. De-
pending on the source Tor-VTL makes sure that the proper
sequence of actions occur to close the connection gracefully
for both the VM and the Tor proxy.

When the VM closes a connection it transmits a FIN
packet that is captured by Tor-VTL. The module then closes
the correct connection to the Tor proxy, and generates a
FIN-ACK packet that is sent to the VM. The connection
state is then marked as CLOSED and the connection deleted.
The final ACK from the VM is dropped by the module.

The Tor server handles a remote close by closing the corre-
sponding proxy socket. This is detected by Tor-VTL which
also does a graceful close on the socket. The module then
generates a FIN packet and queues it for delivery. The con-
nection state is marked as FIN WAIT1, and processing con-
tinues. When the subsequent FIN-ACK packet is received
from the VM, the module generates a final ACK packet,
queues it for delivery, and deletes the connection state.

DNS. Standard DNS lookups to well known DNS servers
can possibly lead to a leakage of information, even if the
subsequent TCP connection is routed through Tor. To pre-
vent this Tor has implemented the SOCKS4a protocol ex-
tension that provides a method of doing DNS name lookups
through the Tor network. Tor-VTL also includes a special
case handler for DNS packets to allow a virtual machine to
do standard DNS lookups.

DNS lookups are handled by a VTL DNS extension that
provides DNS packet processing functions to the VTL frame-
work. The Tor-VTL module includes these extensions along
with a mechanism for tracking pending requests. DNS pack-
ets are a special case of UDP packets that are detectable by
the destination port of the UDP packet. When Tor-VTL
receives a DNS packet it uses the VTL DNS extensions to
extract the lookup requests into a list of request data struc-
tures. Because the SOCKS4a extension is only capable of
handling one hostname lookup per request, DNS packets
containing multiple requests are broken into multiple re-
quests. For each request Tor-VTL opens a connection to the
Tor proxy and transmits a lookup request in the SOCKS4a
format. The request is then stored in a request list and the
module returns to process pending events. Once the lookup
has completed, the result is received on one of the lookup
sockets and matched to a pending request. The module then
uses the DNS extensions to generate a DNS response packet
that is delivered to the VM. Currently, Tor only supports
forward lookups, and so Tor-VTL simply drops DNS packets
containing reverse lookups.

VNET Overlay

VNET Proxy
(PROXY2)

VNET Proxy
(PROXY1)

Gateway
(GW2)

Gateway
(GW1)

InternetLAN
connection

234.234.1.0/24

123.123.1.0/24

VM1

VM2

123.123.1.50

234.234.1.50

234.234.1.1

123.123.1.1

10.10.0.0/16

Figure 6: Subnet tunneling example.

ARP. Tor-VTL is required to handle ARP packets in order
to virtualize the endpoint to the virtual machine. When
the VM initiates a connection, it first transmits an ARP
request for either the destination or gateway IP addresses
depending on its routing table. When Tor-VTL receives
an ARP request packet it automatically generates an ARP
reply with a fake but valid MAC address, and sends that
reply back to the VM. This allows the virtual machine to
begin transmitting IP packets.

3.2 Subnet Tunneling
In our experience with working with our VNET overlay

we encountered situations similar to that shown in Figure 6.
Here two VMs are hosted on a common local area network,
but are configured to use two separate VNET proxies lo-
cated on two different remote LANs. VNET is architected
to present the illusion to a VM that its network presence is
actually physically located on the same LAN as the proxy
server it is configured to use, and as such it is assigned an IP
address from the same subnet as the proxy.2 Thus whenever
a VM seeks to communicate with an address on a different
subnet than that of its proxy, data flows through the proxy.
The result can be a circuitous routing of traffic between ma-
chines that are physically located very near each other.

In the example of Figure 6, traffic from VM1 to VM2 is
first routed through VNET to PROXY1 where it is injected
onto the physical network. The destination MAC address
of these packets is the MAC address of the gateway GW1.
The packet is then routed through the Internet, based on
its destination IP address, so that it eventually arrives at
the gateway GW2. The VNET proxy located on that LAN
(PROXY2) then captures that packet off the physical net-
work and routes it through VNET to VM2. In this case the
packet is routed through the Internet at large three times
(twice through the VNET overlay, once between the phys-
ical gateways), just to arrive at a VM that is physically
connected to the same gigabit switch as the sender.

2In the example, the proxies might correspond to users who
desire that their VM’s network presence is on their own
LAN, but who also want fast communication between them.

VNET prevents this situation when the VMs are config-
ured to use the same proxy.3 The destination MAC address
is set to the destination VM instead of the gateway, and
VNET establishes an overlay link directly between the VMs.
It may appear that we could do precisely the same thing in
the situation of Figure 6, but the routing tables inside of the
source VM will get in the way. The packet will be set to the
MAC address of the gateway. VNET could send the packet
directly to the destination VM, but that VM would drop it
because its MAC address wouldn’t match.

The subnet tunneling service eliminates this problem by
rewriting the packets sent over the direct overlay link.

VTL implementation. VTL is used to allow VNET to mea-
sure traffic between IP addresses in addition to MAC layer
addresses. This allows an adaptation mechanism to recog-
nize when two VMs configured to use two different subnets
are communicating. This case can be distinguished from the
normal cases because the MAC addresses will not match the
destination specified by the IP address. Once this mismatch
is detected, VNET can use VTL to rewrite the Ethernet
headers for packets between the two hosts.

In the new scenario, traffic from VM1 to VM2 is handled
inside the VMs exactly as it was before. VM1 transmits a
packet to VM2 with the MAC address of the gateway GW1.
However, VNET has detected the communication between
VM1 and VM2 previously and has already created a direct
overlay link that only traverses the local gigabit switch. The
packet is first handed to VTL, which rewrites the destination
MAC address with the MAC address of VM2, and is then
sent on the direct link to VM2. In this way we can trans-
parently allow two virtual machines configured to use two
different subnets to communicate directly as if they were
on the same LAN, without requiring modifications to the
routing tables inside the guest environment.

3.3 Enhancing Network Performance
The idea of improving the performance of TCP by insert-

ing a stateful proxy between the source and destination is
well known. RFC 3135 [4] contains a discussion of many of
the methods that have been employed in the past. We now
show the utility of using VTL to implement several of these
methods. We concentrate on improving TCP performance
in networks with large bandwidth-delay products, a common
problem in high performance distributed computing.

The TCP flow control and congestion control algorithms
are well known to perform poorly in high bandwidth-delay
product (high BDP) networks [21]. The problems arise pre-
dominantly from the slow start mechanism as well as the
maximum limit of the TCP window size. Application mis-
takes, such as small socket buffers, are also common.

Local Acknowledgments. One technique that is used to
improve performance of TCP in high BDP paths that are
reliable is the creation of local ACK packets at the source
or at a location near the source. A local ACK is an empty
TCP packet that simply ACKs the last data packet sent by
the source endpoint. This avoids the problems imposed by
the high BDP by fooling the source host into thinking that
the destination is located nearby and latency is minimal.

3For example, when they all belong to one user or VO or
can put on a common IP subnet.

This addresses the problems with TCP window constraints
and socket buffer sizes in that the TCP stack in the virtual
machine never has to wait for an acknowledgment before
sending the next packet. Essentially it takes the TCP win-
dow out of the picture, and transforms TCP into a protocol
that provides a relatively steady stream of packets, clocked
out at the rate of the local acknowledgment. For network ar-
chitectures that have their own reliable delivery guarantees
this method solves the performance problems of applications
developed for TCP.

Local acknowledgments are trivially implemented in VTL.
We limit our discussion of them here as they are also a part
of protocol transformation, discussed below.

Split-TCP. On networks that do not provide delivery guar-
antees, we can still use VTL to provide the advantages of lo-
cal acknowledgments. One of the more well known methods
of achieving this is Split-TCP [2], which transforms TCP
connections into multi-hop instead of end-to-end connec-
tions. This method is most advantageous in networks with
differing link characteristics. VTL can be used to straight-
forwardly integrate a VM into a Split-TCP environment, or
to implement Split-TCP techniques themselves.

Combining VTL with VNET allows dynamic instantia-
tion of Split-TCP connections. By using Wren [43, 14] or
other network monitoring software, VNET can determine
the physical network characteristics underlying the overlay.
Using this information VNET can then use VTL to instan-
tiate a Split-TCP node where it would be advantageous.

Protocol Transformation. Related to Split-TCP is the VTL
functionality that provides protocol transformations. Here
we seek to improve TCP performance by transforming it into
another transport protocol. Existing applications and OSes
can thus be retrofitted with the newest transport protocols
without programming.

The methodology for choosing protocol transformation is
similar to that of Split-TCP. When VNET detects network
characteristics that indicate performance would be improved
by using a different protocol, a VTL module is started at
that location. In this case the VTL module would intercept
the packets belonging to the target protocol (typically TCP)
and transform them into a new protocol. At the end of the
path another VTL module transforms the packet back into
the target protocol for delivery to the end host. To evaluate
this technique we again looked at high BDP networks and
several experimental protocols that have been developed for
them. We discuss UDT, one such protocol next.

VTL-based TCP⇔UDT⇔TCP Transformation. UDT
(UDP-based Data Transfer) [12] is a high-performance pro-
tocol developed for networks operating with a high BDP.
UDT is a reliable delivery transport protocol that provides
the same assurances as TCP but using congestion and flow
control algorithms that are optimized for network paths with
high latency. We use UDT to demonstrate the capability of
VTL to improve network performance for TCP applications
running inside a virtual machine.

We created a VTL module to transform TCP flows into
UDT flows. The design of this module is essentially the
same as the TOR/SOCKS module we described earlier (Sec-
tion 3.1) with a few notable exceptions. The code to manage
the TCP state and interact with the virtual machine were

 0.1

 1

 10

 100

 1 10 100 1000

B
an

dw
id

th
 (

M
B

/s
)

Latency (ms)

TCP
TCP-SOCKBUF

UDT

Figure 7: Bandwidth of TCP, TCP with large socket

buffers, and TCP transformed to UDT. All as a func-

tion of path latency.

mostly untouched. The SOCKS interface functionality was
replaced with UDT-specific functions. Also instead of for-
warding traffic to a central proxy server, UDT connections
are created based on the destination address and port ex-
tracted from TCP-SYN packets.

To evaluate the performance of the UDT transformation
module we ran a ttcp benchmark between a Xen VM and
a second node, while varying the path latency. The latency
was emulated using the netem extension of iproute2 included
with the Linux kernel. We used VTL to intercept all traffic
from the source VM, send it through our transformation,
and deliver it to a server running on the destination host.
For comparison we also ran ttcp benchmarks without the
Xen kernel, both with the default parameters, and with the
socket buffer configured to 1.5 times the BDP of our path.4

Figure 7 shows the results. As the path latency increases
the performance of TCP declines. The increased socket
buffer size does improve performance, but doesn’t stop the
decline. In contrast, TCP transformed to UDT offers consis-
tent and stable performance on the high latency path. The
performance dip of UDT was due to the fact that the mod-
ule scales the ACK rate based on current conditions. The
dip corresponds to the point at which one ACK is generated
for every two data packets instead of for every three data
packets.

In the future we intend to integrate this UDT transfor-
mation module into our VNET overlay architecture. VNET
already includes application and network bandwidth mea-
surement mechanisms, thus VNET could dynamically create
UDT connections between virtual machines when the envi-
ronment is appropriate and the application demands war-
rant it.

3.4 Transparent Security Layer
Almost all recent operating systems include embedded

firewalls that for the most part share the same function-
ality. Packets are compared to user supplied firewall rules,
usually based on address and port signatures, to determine
the appropriate action to take (e.g. allowing or dropping).
They are also all implemented inside the host’s operating
system. While these firewalls do help to curb some of the

4We did try these benchmarks within Xen as well, but a fatal
interaction of Xen and netem led to very low performance.
The present point of comparison shows TCP and TCP with
large socket buffers in the most positive light.

more simplistic security threats to systems, they all have
the same drawbacks. Since the firewall is implemented in
the actual system nothing prevents the user or a system
level process from altering the rules or even the firewall im-
plementation itself. If an externally available system level
service is compromised the firewall itself is compromised,
since the attacker will be able to access and modify the fire-
wall rules directly.

With VTL we can implement a firewall that has the same
functionality, but that can be implemented and used with-
out modifying the OS or applications, and that cannot be
compromised by the OS or any other system level process.
Like the other examples the firewall is a VTL module that
vets every packet into and out of the VM. Since the operat-
ing system and any rogue process are contained inside the
VM there is no way for them to access or modify the firewall.

3.5 Enabling Connection Persistence During
Long Duration Migration and Hibernation

Lately migration has been espoused as on of the most
promising advantages of virtual machine environments. Both
the VMWare and Xen developers have spent considerable ef-
fort in improving migration capabilities for their products,
leading to live migration capabilities on LANs [5, 30]. Migra-
tion over wider areas, where bandwidths are lower and more
state (e.g., disk) needs to be transfered, results in longer mi-
gration times during which the VM does not run [35, 31, 5,
20]. While strategies for migrating the execution environ-
ment have been developed they have yet to deal with the
issue of migrating open network connections over the wide
area. Examination of migrating network connections reveals
two issues that must be addressed:

1. Routing: Ensuring that the packets are routed to the
new physical location correctly.

2. Timeouts: Preventing connections from closing due to
timeout events during long periods of disconnection
due to migration or hibernation.

The routing issue can be addressed with the use of VNET
as discussed in earlier work [38]. Preventing timeouts is a
problem that we have addressed in VTL framework.

Network timeouts can arise from multiple sources. From
the system level, TCP connections maintain a timeout timer
that closes the connection after a length of time in which no
packets have arrived from the remote host. This can arise
in one of two situations. Either the connection is inactive
and not sending data for prolonged periods of time or the
amount of data is large enough to overflow the host’s receive
buffer, in which case additional data packets are dropped
by the end host. To prevent these situations from causing a
timeout on the sender, TCP will transmit keep-alive packets.
These packets signal the sender that the remote host is up,
but not ready to accept data. The second type of timeout
that can occur is an application timeout. These timeouts
are more difficult if not impossible to address and require
an understanding of the applications behavior. By using
VTL we are able to address the issue of TCP timeouts, but
not application timeouts.

VTL Implementation. We have developed a VTL module
that allows us to indefinitely suspend a VM while maintain-
ing its open connections for the length of time that the VM

is not running. The module tracks the connection state of
all the open connections of the VM. Whenever the VM is
suspended (for example, when migration begins), a signal is
sent to the module to start listening for incoming packets.
The VTL module then answers every received packet with
an acknowledgment showing a window size of zero. The re-
mote hosts stop sending data and periodically send probe
packets. These probes are received by the VTL module and
acked to ensure that the connections remain active. When
the VM is resumed at its new location a signal is sent to the
VTL module to stop processing packets for that VM.

During migration, this maintenance of connection state
works in conjunction with VNET. VNET guarantees that
addresses don’t change regardless of the location of the VM,
and can also route packets anywhere on the overlay. This
means that when a VM migrates VNET reconfigures itself
to route that VM’s packets to the VTL module instead.
When the VM is resumed VNET is configured to now de-
liver packets to the VM before disabling the VTL module.
This ensures that only the VM or VTL are responsible for
handling traffic for the VM at any given time, as well as
ensuring that there is always perceived connectivity to that
virtual machine.

3.6 Cooperative Selective Wormholing
Collecting and analyzing network traffic to detect new

methods of attack has long been recognized as a necessity by
the security community, and numerous systems have been
developed to provide such a service. Nearly all of them op-
erate by aggregating network traffic from some source. We
have developed a new method of traffic aggregation called
Cooperative Selective Wormholing (CSW) that relies on vol-
unteers contributing their hosts’ unused network ports and
a portion of their bandwidth [23]. CSW wormholes cap-
ture traffic destined for those ports and tunnel it to generic
backend systems stood up by researchers and others. The
attacker is unaware that he is interacting with a backend
instead of with the volunteer’s machine. The volunteer sees
limited (and controlled) performance impact, and a CSW
wormhole will immediately get out of the way if the port is
otherwise used.

VTL Implementation. Using VTL we created Vortex, a
prototype implementation of CSW. Because VTL is cross
platform, the Vortex volunteer software (the client) can run
on both Unix/Linux and Windows. The Vortex implemen-
tation uses many VTL features to maintain invisibility to
the attacker, restrict access to the volunteer PC and the
LAN it is on, and control the use of resources. As shown
in Figure 8, the Vortex client runs side by side with the
network stack on the volunteer machine, and delivers Eth-
ernet packets (rewritten for anonymity) to a VNET overlay,
which coveys them to almost any kind of backend system.
The Vortex client consists of only 800 lines of code.

Vortex helps to demonstrate the generality of VTL, pro-
viding an example of a VTL-based service that operates di-
rectly on a commodity PC without VMs.

4. RELATED WORK
There are many toolsets that provide specific examples

of packet or network flow modification to achieve improved
performance or additional functionality. However, we be-
lieve that our work is novel in that we provide a general

Vortex

VTL

PCAP libnetFirewall

NIC

VNET
Proxy

Apps

IDS
Analysis
Backend

VNET
Overlay

Windows/UNIX

Commodity PC

Operating
System

Physical
Honeypot

VM Based
Honeypot

VM

Backend Network

Figure 8: Vortex architecture. Vortex uses VTL to

capture Ethernet packets before they are dropped

by the host firewall. The packets are conveyed via

VNET to just about any kind of IDS backend.

framework that targets virtual environments. The previous
work typically targets a specific case, and often requires re-
configuration of the host environment or modification of an
application. VTL allows simplified implementations of many
approaches while allowing them to operate in a manner that
is transparent to the application.

The TESLA architecture [34] provides capabilities very
similar to VTL, but does so at the session layer. By using
a library interposition technique TESLA is able to intercept
network-related system calls and add transparent function-
ality to an application. TESLA and VTL share many mo-
tivations and capabilities, however in many situations there
is a significant advantage in operating at the network level.
For example, our techniques can work regardless of the OS
in the VM.

There are also tools that use VMs to add additional func-
tionality to the network. Of note here is JanusVM [16],
which sends all of the traffic from a VM through the Tor Net-
work. While this appears to accomplish the same function
as our Tor-VTL tool, there are differences. First, JanusVM
operates inside the guest by establishing a VPN that uses a
proxying tool to handle all traffic. This requires the use of
a specially configured virtual machine, and further configu-
ration of the host environment. Tor-VTL is a self-contained
executable that requires no special system configuration.

5. CONCLUSION AND FUTURE WORK
We have defined the notion of a transparent network ser-

vice, made the case for such services, and presented the de-
sign, implementation, and use of VTL, a framework to help
build such services. Using VTL, we illustrated a range of ser-
vices, including bandwidth optimizers for high bandwidth-
delay product networks, network anonymization, tools for
network migration with persistent TCP connections, and
tools for wormholing for IDSes. All of our examples and the
VTL framework itself can operate without having to modify
any applications or operating systems.

In the future we plan to explore more transparent net-
work services, using the VTL framework to do so. For ex-
ample, we plan to investigate adding security policy traver-
sal capabilities, such as those provided by CODO [36] and
STUN [32], to existing, unmodified applications.

6. REFERENCES
[1] AnonymOS LiveCD.

http://sourceforge.net/projects/anonym-os/.

[2] Bakre, A., and Badrinath, B. R. I-tcp: Indirect
tcp for mobile hosts. In Proc. International
Conference on Distributed Computing Systems (April
1995), pp. 136–143.

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S.,

Harris, T., Ho, A., Neugebauer, R., Pratt, I.,

and Warfield, A. Xen and the art of virtualization.
In Proc. of the 19th ACM symposium on Operating
systems principles (SOSP) (October 2003),
pp. 164–177.

[4] Border, J., Kojo, M., Griner, J., Montenegro,

G., and Shelby, Z. Performance enhancing proxies
intended to mitigate link-related degradations. Tech.
Rep. RFC 3135, Network Working Group, June 2001.

[5] Clark, C., Fraser, K., Hand, S., Hansen, J. G.,

Jul, E., Limpach, C., Pratt, I., and Warfield, A.

Live migration of virtual machines. In Proc. of the
Symposium on Networked Systems Design and
Implementation (NSDI) (July 2005), pp. 273–286.

[6] Dingledine, R., Mathewson, N., and Syverson,

P. Tor: The second-generation onion router. In Proc.
of the 13th USENIX Security Symposium (August
2004).

[7] Figueiredo, R., Dinda, P. A., and Fortes, J. A
case for grid computing on virtual machines. In Proc.
of the 23rd International Conference on Distributed
Computing Systems (ICDCS) (May 2003),
pp. 550–559.

[8] Figueiredo, R., Dinda, P. A., and Fortes, J.

Special issue on virtualization. IEEE Computer (May
2005).

[9] Ganguly, A., Agrawal, A., Boykin, P., and

Figueiredo, R. Wow: Self-organizing wide area
overlay networks of virtual workstations. In Proc. of
the 15th IEEE International Symposium on High
Performance Distributed Computing (HPDC) (June
2006), pp. 30–42.

[10] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum,

M., and Boneh, D. Terra: A virtual machine-based
platform for trusted computing. In Proc. of the 19th
ACM symposium on Operating systems principles
SOSP (October 2003), pp. 193–206.

[11] Garfinkel, T., and Rosenblum, M. A virtual
machine introspection based architecture for intrusion
detection. In Proc. Network and Distributed Systems
Security Symposium (February 2003).

[12] Gu, Y., and Grossman, R. L. Udt: An application
level transport protocol for grid computing. In 2nd
International Workshop on Protocols for
Long-Distance Networks (PFLDNet) (February 2004),
pp. 13–14.

[13] Gupta, A., and Dinda, P. A. Inferring the topology
and traffic load of parallel programs running in a

virtual machine environment. In Proc. of the 10th
Workshop on Job Scheduling Strategies for Parallel
Processing (JSPPS) (June 2004), pp. 125–143.

[14] Gupta, A., Zangrilli, M., Sundararaj, A.,

Huang, A., Dinda, P., and Lowekamp, B. Free
network measurement for virtual machine distributed
computing. In Proc. of the 20th IEEE International
Parallel and Distributed Processing Symposium
(IPDPS) (April 2006).

[15] Huang, W., Liu, J., Abali, B., and Panda, D. K.

A case for high performance computing with virtual
machines. In Proc. of the 20th annual International
Conference on Supercomputing (ICS) (June 2006),
pp. 125–134.

[16] JanusVM: An Internet Privacy Appliance.
http://janusvm.peertech.org.

[17] Jiang, X., and Xu, D. Soda: A service-on-demand
architecture for application service hosting utility
platforms. In Proc. of the 12th IEEE International
Symposium on High Performance Distributed
Computing (HPDC) (June 2003), pp. 174–183.

[18] Keahey, K., Foster, I., Freeman, T., and Zhang,

X. Virtual workspaces: Achieving quality of service
and quality of life in the grid. Scientific Programming
3, 14 (2005).

[19] Koblas, D., and Koblas, M. R. Socks. In UNIX
Security III Symposium (September 1992), Usenix,
pp. 77–88.

[20] Kozuch, M., Satyanarayanan, M., Bressoud, T.,

and Ke, Y. Efficient state transfer for Internet
suspend/resume. Tech. Rep. IRP-TR-02-03, Intel
Research Laboratory at Pittsburgh, May 2002.

[21] Lakshman, T., and Madhow, U. The performance
of tcp/ip for networks with high bandwidth-delay
products and random loss. IEEE/ACM Transactions
on Networking 5, 3 (July 1997), 336–350.

[22] Lange, J., Sundararaj, A., and Dinda, P.

Automatic dynamic run-time optical network
reservations. In Proc. of the 14th IEEE International
Symposium on High Performance Distributed
Computing (HPDC) (July 2005), pp. 255-264.

[23] Lange, J., Dinda, P., and Bustamante, F. Vortex:
Enabling Cooperative Selective Wormholing for
Network Security Systems, In Submission.

[24] LeVasseur, J., Uhlig, V., Stoess, J., and Goetz,

S. Unmodified device driver reuse and improved
system dependability. In Proc. of the Symposium on
Operating Systems Design and Implemetation (OSDI)
(December 2004), pp. 17–30.

[25] Libnet. http://libnet.sourceforge.net/.

[26] Lin, B., and Dinda, P. Vsched: Mixing batch and
interactive virtual machines using periodic real-time
scheduling. In Proc. of ACM/IEEE SC
(Supercomputing) (November 2005), pp. 8.

[27] Liu, J., Huang, W., Abali, B., and Panda, D. K.

High performance VMM-bypass I/O in virtual
machines. In Proc. of the USENIX Annual Technical
Conference (May 2006).

[28] McCane, S., and Jacobson, V. The bsd packet
filter: A new architecture for user-level packet capture.
In USENIX Winter (January 1993), pp. 259–270.

[29] Milojicic, D., Douglis, F., Paindaveine, Y.,

Wheeler, R., and Zhou, S. Process migration. ACM
Computing Surveys 32, 3 (September 2000), 241–299.

[30] Nelson, M., Lim, B.-H., and Hutchins, G. Fast
transparent migration for virtual machines. In Proc. of
the USENIX Annual Technical Conference (April
2005), pp. 391–394.

[31] Osman, S., Subhraveti, D., Su, G., and Nieh, J.

The design and implementation of Zap: A system for
migrating computing environments. In Proc. of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI) (December 2002),
pp. 361–376.

[32] Rosenberg, J., Weinberger, J., Huitema, C., and

Mahy, R. Stun: Simple traversal of user datagram
protocol (udp) through network address translators
(nats). Tech. Rep. RFC 3489, Internet Engineering
Task Force, March 2003.

[33] Ruth, P., Jiang, X., Xu, D., and Goasguen, S.

Virtual distributed environments in a shared
infrastructure. IEEE Computer (May 2005),
pp. 63–69.

[34] Salz, J., Snoeren, A., and Balakrishnan, H.

TESLA: A Transparent, Extensible Session-Layer
Architecture for End-to-End Network Services. In 4th
Usenix Symposium on Internet Technologies and
Systems (Seattle, WA, March 2003).

[35] Sapuntzakis, C., Chandra, R., Praff, B., Chow,

J., Lam, M., and Rosenblum, M. Optimizing the
migration of virtual computers. In Proc. of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI) (December 2002),
pp. 377–390.

[36] Son, S., Allcock, B., and Livny, M. Codo:
Firewall traversal by cooperative on-demand opening.
In Proc. of the 14th IEEE International Symposium
on High-Performance Distributed Computing (HPDC)
(July 2005), pp. 233–242.

[37] Sundararaj, A., and Dinda, P. Towards virtual
networks for virtual machine grid computing. In Proc.
of the 3rd USENIX Virtual Machine Research And
Technology Symposium (VM) (May 2004).

[38] Sundararaj, A., Gupta, A., , and Dinda, P.

Increasing application performance in virtual
environments through run-time inference and
adaptation. In Proc. of the 14th IEEE International
Symposium on High Performance Distributed
Computing (HPDC) (July 2005), pp. 47–58.

[39] VMWare Corporation. http://www.vmware.com/.

[40] Waldsburger, C. Memory resource management in
vmware esx server. In Proc. of the 5th Symposium on
Operating Systems Design and Implementation
(OSDI) (December 2002), pp. 188–194.

[41] Whitaker, A., Shaw, M., and Gribble, S. D.

Scale and performance in the denali isolation kernel.
SIGOPS Oper. Syst. Rev. 36, SI (2002), 195–209.

[42] WinPcap. http://www.winpcap.org/.

[43] Zangrilli, M., and Lowekamp, B. B. Using passive
traces of application traffic in a network monitoring
system. In Proc. of the 13th IEEE International
Symposium on High Performance Distributed
Computing (HPDC) (June 2004), pp. 77–86.

