Dual Stack Virtualization: Consolidating HPC and commodity workloads in the cloud

Brian Kocoloski, Jiannan Ouyang, Jack Lange University of Pittsburgh

Summary

- Cloud computing holds great promise for HPC
 - Significant interest in scientific computing community
- Problem: HPC applications need HPC environments
 - Tightly coupled, massively parallel, and synchronized
 - Current services must provide dedicated HPC clouds
- Can we host HPC applications in a commodity cloud?
- Dual Stack Approach
 - Provision the underlying software stack along with HPC job
 - Commodity VMM should handle commodity applications
 - HPC VMM (Palacios) can provide HPC environment

HPC in the cloud

- Clouds are starting to look like supercomputers...
 - Are we seeing a convergence?
- Not yet
 - Noise issues
 - Poor isolation
 - Resource contention
 - Lack of control over topology
- Very bad for tightly coupled parallel apps
 - Require specialized environments that solve these problems
- Approaching convergence
 - Vision: Dynamically partition cloud resources into HPC and commodity zones
 - This talk: partitioning compute nodes with performance isolation

User Space Partitioning

- Current cloud systems do support this, but...
- Interference still exists inside the OS
 - Inherent feature of commodity systems

HPC vs. Commodity Systems

- Commodity systems have fundamentally different focus than HPC systems
 - Amdahl's vs. Gustafson's laws
 - Commodity: Optimized for common case
- HPC: Common case is not good enough
 - At large (tightly coupled) scales, percentiles lose meaning
 - Collective operations must wait for slowest node
 - 1% of nodes can make 99% suffer
 - HPC systems must optimize outliers (worst case)

Commodity VMMs

- Virtualization is considered an "enterprise" technology
 - Designed for commodity environments
 - Fundamentally different, but not wrong!

- Example: KVM architecture issues
 - Userspace handlers
 - Fairly complex memory management
 - Locking and periodic optimizations
 - Presence of system noise

Palacios VMM

- OS-independent embeddable virtual machine monitor
 - Established compatibility with Linux, Kitten, and Minix
- Specifically targets HPC applications and environments
 - Consistent performance with very low variance
- Deployable on supercomputers, clusters (Infiniband/Ethernet), and servers
 - 0-3% overhead at large scales (thousands of nodes)
 - VEE 2011, IPDPS 2010, ROSS 2011

Palacios

An OS Independent Embeddable VMM

Open source and freely available http://www.v3vee.org/palacios

Palacios/Linux

- Palacios/Linux provides lightweight and high performance virtualized environments
 - Internally manages dedicated resources
 - Memory and CPU scheduling
 - Does not bother with "enterprise features"
 - Page sharing/merging, swapping, overcommitting resources

Palacios enables scalable HPC performance on commodity platforms

VMM Comparison

- Primary difference: Consistency
 - Requirement for tightly coupled performance at large scale
- Example: KVM nested paging architecture
 - Maintains free page caches to optimize performance
 - Requires cache management
 - Shares page tables to optimize memory usage
 - Requires synchronization

VMM	% of exits	Mean	Std Dev	# NPFS
KVM	52%	8804	5232	3,265,156
Palacios	50%	10876	2685	1,872,017

Dual Stack Architecture

Partitioning at the OS level

- Enable cloud to host both commodity and HPC apps
 - Each zone optimized for the target applications

Evaluation

- Goal: Measure VM isolation properties
- Partitioned a single node into HPC and commodity zones
 - Commodity Zone: Parallel Kernel compilation
 - HPC Zone: Set of standard HPC benchmarks
 - System:
 - Dual 6-core AMD Opteron with NUMA topology
 - Linux guest environments (HPC and commodity)
- Important: Local node only
 - Does not promise good performance at scale
 - But, poor performance will magnify at large scales

Results

MiniFE: Unstructured implicit finite element solver
Mantevo Project -- https://software.sandia.gov/mantevo/index.html

Discussion

- A dual stack approach can provide HPC environments in commodity systems
 - HPC and commodity workloads can dynamically share resources
 - HPC requirements can be met without fully dedicated resources

- Networking is still an open issue
 - Need mechanisms for isolation and partitioning
 - Need high performance networking architectures
 - 1Gbit is not good enough
 - 10Gbit is good, Infiniband is better
 - Need control over placement and topologies

Conclusion

- The cloud model is transformative for HPC workloads
 - But only if it can meet the demands of HPC users

- Cloud services need to explicitly support HPC workloads
 - Different requirements and behaviors than commodity applications

- A partitioned dual stack approach can get us there
 - Dynamically configured cloud infrastructures for multiple application classes

Thank you

- Jack Lange
 - jacklange@cs.pitt.edu
 - http://www.cs.pitt.edu/~jacklange

– http://www.v3vee.org/palacios

